Dimension Reduction for Multivariate Response Data

This article concerns the analysis of multivariate response data with multivariate regressors. Methods for reducing the dimensionality of response variables are developed, with the goal of preserving as much regression information as possible. We note parallels between this goal and the goal of slic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2003-03, Vol.98 (461), p.99-109
Hauptverfasser: Li, Ker-Chau, Aragon, Yve, Shedden, Kerby, Thomas Agnan, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 461
container_start_page 99
container_title Journal of the American Statistical Association
container_volume 98
creator Li, Ker-Chau
Aragon, Yve
Shedden, Kerby
Thomas Agnan, C
description This article concerns the analysis of multivariate response data with multivariate regressors. Methods for reducing the dimensionality of response variables are developed, with the goal of preserving as much regression information as possible. We note parallels between this goal and the goal of sliced inverse regression, which intends to reduce the regressor dimension in a univariate regression while preserving as much regression information as possible. A detailed discussion is given for the case where the response is a curve measured at fixed points. The problem in this setting is to select basis functions for fitting an aggregate of curves. We propose that instead of focusing on goodness of fit, attention should be shifted to the problem of explaining the variation of the curves in terms of the regressor variables. A data-adaptive basis searching method based on dimension reduction theory is proposed. Simulation results and an application to a climatology problem are given.
doi_str_mv 10.1198/016214503388619139
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_30045198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30045198</jstor_id><sourcerecordid>30045198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-fc71ba4e42dfbf8bde4c0e15b91a67a0984fec267370a414b7e6ab42462b9f7b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gCAMLtxV82qTLlzIjC8YEUTBXUjSBDK0zZikyvx7UyouFLybe-F853LvAeAEwQuEan4JUYURLSEhnFeoRqTeATNUElZgRt92wWwEikzU--AgxjXMxTifAbx0nemj8_382TSDTuNkfZg_Dm1yHzI4mUyW4sb30cyXMskjsGdlG83xdz8Er7c3L4v7YvV097C4XhWaIpgKqxlSkhqKG6ssV42hGhpUqhrJiklYc2qNxhUjDEqKqGKmkopiWmFVW6bIITif9m6Cfx9MTKJzUZu2lb3xQxSE0zJ_CDN49gtc-yH0-TaRv2ccMTpCeIJ08DEGY8UmuE6GrUBQjBmKvxlm0-lkWsfkw4-DQEjLbMn61aS7PmfWyU8f2kYkuW19sEH22uUz_9n_BT-6f9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274781740</pqid></control><display><type>article</type><title>Dimension Reduction for Multivariate Response Data</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Li, Ker-Chau ; Aragon, Yve ; Shedden, Kerby ; Thomas Agnan, C</creator><creatorcontrib>Li, Ker-Chau ; Aragon, Yve ; Shedden, Kerby ; Thomas Agnan, C</creatorcontrib><description>This article concerns the analysis of multivariate response data with multivariate regressors. Methods for reducing the dimensionality of response variables are developed, with the goal of preserving as much regression information as possible. We note parallels between this goal and the goal of sliced inverse regression, which intends to reduce the regressor dimension in a univariate regression while preserving as much regression information as possible. A detailed discussion is given for the case where the response is a curve measured at fixed points. The problem in this setting is to select basis functions for fitting an aggregate of curves. We propose that instead of focusing on goodness of fit, attention should be shifted to the problem of explaining the variation of the curves in terms of the regressor variables. A data-adaptive basis searching method based on dimension reduction theory is proposed. Simulation results and an application to a climatology problem are given.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214503388619139</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Canonical correlation ; Correlation ; Data analysis ; Datasets ; Dimensionality ; Dimensionality reduction ; Effective dimension reduction space ; Eigenvalues ; Eigenvectors ; Functional data analysis ; Linear regression ; Mathematical vectors ; Parsimony ; Principal component analysis ; Principal components analysis ; Regression analysis ; Sliced inverse regression ; Space ; Standard deviation ; Statistical methods ; Statistics ; Theory and Methods ; Variables</subject><ispartof>Journal of the American Statistical Association, 2003-03, Vol.98 (461), p.99-109</ispartof><rights>American Statistical Association 2003</rights><rights>Copyright 2003 American Statistical Association</rights><rights>Copyright American Statistical Association Mar 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-fc71ba4e42dfbf8bde4c0e15b91a67a0984fec267370a414b7e6ab42462b9f7b3</citedby><cites>FETCH-LOGICAL-c410t-fc71ba4e42dfbf8bde4c0e15b91a67a0984fec267370a414b7e6ab42462b9f7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30045198$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30045198$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252,59645,60434</link.rule.ids></links><search><creatorcontrib>Li, Ker-Chau</creatorcontrib><creatorcontrib>Aragon, Yve</creatorcontrib><creatorcontrib>Shedden, Kerby</creatorcontrib><creatorcontrib>Thomas Agnan, C</creatorcontrib><title>Dimension Reduction for Multivariate Response Data</title><title>Journal of the American Statistical Association</title><description>This article concerns the analysis of multivariate response data with multivariate regressors. Methods for reducing the dimensionality of response variables are developed, with the goal of preserving as much regression information as possible. We note parallels between this goal and the goal of sliced inverse regression, which intends to reduce the regressor dimension in a univariate regression while preserving as much regression information as possible. A detailed discussion is given for the case where the response is a curve measured at fixed points. The problem in this setting is to select basis functions for fitting an aggregate of curves. We propose that instead of focusing on goodness of fit, attention should be shifted to the problem of explaining the variation of the curves in terms of the regressor variables. A data-adaptive basis searching method based on dimension reduction theory is proposed. Simulation results and an application to a climatology problem are given.</description><subject>Canonical correlation</subject><subject>Correlation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dimensionality</subject><subject>Dimensionality reduction</subject><subject>Effective dimension reduction space</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Functional data analysis</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Parsimony</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Sliced inverse regression</subject><subject>Space</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Variables</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gCAMLtxV82qTLlzIjC8YEUTBXUjSBDK0zZikyvx7UyouFLybe-F853LvAeAEwQuEan4JUYURLSEhnFeoRqTeATNUElZgRt92wWwEikzU--AgxjXMxTifAbx0nemj8_382TSDTuNkfZg_Dm1yHzI4mUyW4sb30cyXMskjsGdlG83xdz8Er7c3L4v7YvV097C4XhWaIpgKqxlSkhqKG6ssV42hGhpUqhrJiklYc2qNxhUjDEqKqGKmkopiWmFVW6bIITif9m6Cfx9MTKJzUZu2lb3xQxSE0zJ_CDN49gtc-yH0-TaRv2ccMTpCeIJ08DEGY8UmuE6GrUBQjBmKvxlm0-lkWsfkw4-DQEjLbMn61aS7PmfWyU8f2kYkuW19sEH22uUz_9n_BT-6f9I</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Li, Ker-Chau</creator><creator>Aragon, Yve</creator><creator>Shedden, Kerby</creator><creator>Thomas Agnan, C</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20030301</creationdate><title>Dimension Reduction for Multivariate Response Data</title><author>Li, Ker-Chau ; Aragon, Yve ; Shedden, Kerby ; Thomas Agnan, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-fc71ba4e42dfbf8bde4c0e15b91a67a0984fec267370a414b7e6ab42462b9f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Canonical correlation</topic><topic>Correlation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dimensionality</topic><topic>Dimensionality reduction</topic><topic>Effective dimension reduction space</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Functional data analysis</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Parsimony</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Sliced inverse regression</topic><topic>Space</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ker-Chau</creatorcontrib><creatorcontrib>Aragon, Yve</creatorcontrib><creatorcontrib>Shedden, Kerby</creatorcontrib><creatorcontrib>Thomas Agnan, C</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ker-Chau</au><au>Aragon, Yve</au><au>Shedden, Kerby</au><au>Thomas Agnan, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension Reduction for Multivariate Response Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>98</volume><issue>461</issue><spage>99</spage><epage>109</epage><pages>99-109</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>This article concerns the analysis of multivariate response data with multivariate regressors. Methods for reducing the dimensionality of response variables are developed, with the goal of preserving as much regression information as possible. We note parallels between this goal and the goal of sliced inverse regression, which intends to reduce the regressor dimension in a univariate regression while preserving as much regression information as possible. A detailed discussion is given for the case where the response is a curve measured at fixed points. The problem in this setting is to select basis functions for fitting an aggregate of curves. We propose that instead of focusing on goodness of fit, attention should be shifted to the problem of explaining the variation of the curves in terms of the regressor variables. A data-adaptive basis searching method based on dimension reduction theory is proposed. Simulation results and an application to a climatology problem are given.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/016214503388619139</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2003-03, Vol.98 (461), p.99-109
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_30045198
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis:Master (3349 titles)
subjects Canonical correlation
Correlation
Data analysis
Datasets
Dimensionality
Dimensionality reduction
Effective dimension reduction space
Eigenvalues
Eigenvectors
Functional data analysis
Linear regression
Mathematical vectors
Parsimony
Principal component analysis
Principal components analysis
Regression analysis
Sliced inverse regression
Space
Standard deviation
Statistical methods
Statistics
Theory and Methods
Variables
title Dimension Reduction for Multivariate Response Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20Reduction%20for%20Multivariate%20Response%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Li,%20Ker-Chau&rft.date=2003-03-01&rft.volume=98&rft.issue=461&rft.spage=99&rft.epage=109&rft.pages=99-109&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214503388619139&rft_dat=%3Cjstor_proqu%3E30045198%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274781740&rft_id=info:pmid/&rft_jstor_id=30045198&rfr_iscdi=true