Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis

Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1994-09, Vol.265 (5177), p.1405-1412
Hauptverfasser: Coleman, David E., Berghuis, Albert M., Lee, Ethan, Linder, Maurine E., Gilman, Alfred G., Sprang, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 5177
container_start_page 1405
container_title Science (American Association for the Advancement of Science)
container_volume 265
creator Coleman, David E.
Berghuis, Albert M.
Lee, Ethan
Linder, Maurine E.
Gilman, Alfred G.
Sprang, Stephen R.
description Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.
doi_str_mv 10.1126/science.8073283
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_2884821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2884821</jstor_id><sourcerecordid>2884821</sourcerecordid><originalsourceid>FETCH-LOGICAL-j106t-9a8563791d6c84a4850801c5254798dada47820b6287b1e9cc3ec105e429663c3</originalsourceid><addsrcrecordid>eNotjM1LwzAchoMoWKdnLx5y2LXzl6RJk-MougkTBSd4EEqWpjSlHyPJhCL-747p6YH3eXkQuiWwIISK-2CcHYxdSMgZlewMJQQUTxUFdo4SACbSo-KX6CqEFuDoFEvQx1v0BxMP3gY81nhpovuyuBiHevS9jm4cTvtqXn67T93tG01-5lgPFY6Nxc_WNHpwoT99tq94PVV-7KbgwjW6qHUX7M0_Z-j98WFbrNPNy-qpWG7SloCIqdKSC5YrUgkjM51JDhKI4ZRnuZKVrnSWSwo7QWW-I1YZw6whwG1GlRDMsBm6--u2IY6-3HvXaz-VVMpMUsJ-AaoMUNo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</creator><creatorcontrib>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</creatorcontrib><description>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.8073283</identifier><language>eng</language><publisher>American Society for the Advancement of Science</publisher><subject>Atoms ; Crystals ; Datasets ; Electron density ; Hydrogen bonds ; Hydrolysis ; Molecules ; Nucleotides ; Oxygen ; Phosphates ; Research Article</subject><ispartof>Science (American Association for the Advancement of Science), 1994-09, Vol.265 (5177), p.1405-1412</ispartof><rights>Copyright 1994 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2884821$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2884821$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,58000,58233</link.rule.ids></links><search><creatorcontrib>Coleman, David E.</creatorcontrib><creatorcontrib>Berghuis, Albert M.</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>Linder, Maurine E.</creatorcontrib><creatorcontrib>Gilman, Alfred G.</creatorcontrib><creatorcontrib>Sprang, Stephen R.</creatorcontrib><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><title>Science (American Association for the Advancement of Science)</title><description>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</description><subject>Atoms</subject><subject>Crystals</subject><subject>Datasets</subject><subject>Electron density</subject><subject>Hydrogen bonds</subject><subject>Hydrolysis</subject><subject>Molecules</subject><subject>Nucleotides</subject><subject>Oxygen</subject><subject>Phosphates</subject><subject>Research Article</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1LwzAchoMoWKdnLx5y2LXzl6RJk-MougkTBSd4EEqWpjSlHyPJhCL-747p6YH3eXkQuiWwIISK-2CcHYxdSMgZlewMJQQUTxUFdo4SACbSo-KX6CqEFuDoFEvQx1v0BxMP3gY81nhpovuyuBiHevS9jm4cTvtqXn67T93tG01-5lgPFY6Nxc_WNHpwoT99tq94PVV-7KbgwjW6qHUX7M0_Z-j98WFbrNPNy-qpWG7SloCIqdKSC5YrUgkjM51JDhKI4ZRnuZKVrnSWSwo7QWW-I1YZw6whwG1GlRDMsBm6--u2IY6-3HvXaz-VVMpMUsJ-AaoMUNo</recordid><startdate>19940902</startdate><enddate>19940902</enddate><creator>Coleman, David E.</creator><creator>Berghuis, Albert M.</creator><creator>Lee, Ethan</creator><creator>Linder, Maurine E.</creator><creator>Gilman, Alfred G.</creator><creator>Sprang, Stephen R.</creator><general>American Society for the Advancement of Science</general><scope/></search><sort><creationdate>19940902</creationdate><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><author>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j106t-9a8563791d6c84a4850801c5254798dada47820b6287b1e9cc3ec105e429663c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Atoms</topic><topic>Crystals</topic><topic>Datasets</topic><topic>Electron density</topic><topic>Hydrogen bonds</topic><topic>Hydrolysis</topic><topic>Molecules</topic><topic>Nucleotides</topic><topic>Oxygen</topic><topic>Phosphates</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, David E.</creatorcontrib><creatorcontrib>Berghuis, Albert M.</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>Linder, Maurine E.</creatorcontrib><creatorcontrib>Gilman, Alfred G.</creatorcontrib><creatorcontrib>Sprang, Stephen R.</creatorcontrib><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, David E.</au><au>Berghuis, Albert M.</au><au>Lee, Ethan</au><au>Linder, Maurine E.</au><au>Gilman, Alfred G.</au><au>Sprang, Stephen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>1994-09-02</date><risdate>1994</risdate><volume>265</volume><issue>5177</issue><spage>1405</spage><epage>1412</epage><pages>1405-1412</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</abstract><pub>American Society for the Advancement of Science</pub><doi>10.1126/science.8073283</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1994-09, Vol.265 (5177), p.1405-1412
issn 0036-8075
1095-9203
language eng
recordid cdi_jstor_primary_2884821
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Atoms
Crystals
Datasets
Electron density
Hydrogen bonds
Hydrolysis
Molecules
Nucleotides
Oxygen
Phosphates
Research Article
title Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20Active%20Conformations%20of%20G$_%7Bi%5Calpha1%7D$%20and%20the%20Mechanism%20of%20GTP%20Hydrolysis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Coleman,%20David%20E.&rft.date=1994-09-02&rft.volume=265&rft.issue=5177&rft.spage=1405&rft.epage=1412&rft.pages=1405-1412&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.8073283&rft_dat=%3Cjstor%3E2884821%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2884821&rfr_iscdi=true