Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis
Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1994-09, Vol.265 (5177), p.1405-1412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1412 |
---|---|
container_issue | 5177 |
container_start_page | 1405 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 265 |
creator | Coleman, David E. Berghuis, Albert M. Lee, Ethan Linder, Maurine E. Gilman, Alfred G. Sprang, Stephen R. |
description | Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP. |
doi_str_mv | 10.1126/science.8073283 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_2884821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2884821</jstor_id><sourcerecordid>2884821</sourcerecordid><originalsourceid>FETCH-LOGICAL-j106t-9a8563791d6c84a4850801c5254798dada47820b6287b1e9cc3ec105e429663c3</originalsourceid><addsrcrecordid>eNotjM1LwzAchoMoWKdnLx5y2LXzl6RJk-MougkTBSd4EEqWpjSlHyPJhCL-747p6YH3eXkQuiWwIISK-2CcHYxdSMgZlewMJQQUTxUFdo4SACbSo-KX6CqEFuDoFEvQx1v0BxMP3gY81nhpovuyuBiHevS9jm4cTvtqXn67T93tG01-5lgPFY6Nxc_WNHpwoT99tq94PVV-7KbgwjW6qHUX7M0_Z-j98WFbrNPNy-qpWG7SloCIqdKSC5YrUgkjM51JDhKI4ZRnuZKVrnSWSwo7QWW-I1YZw6whwG1GlRDMsBm6--u2IY6-3HvXaz-VVMpMUsJ-AaoMUNo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</creator><creatorcontrib>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</creatorcontrib><description>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.8073283</identifier><language>eng</language><publisher>American Society for the Advancement of Science</publisher><subject>Atoms ; Crystals ; Datasets ; Electron density ; Hydrogen bonds ; Hydrolysis ; Molecules ; Nucleotides ; Oxygen ; Phosphates ; Research Article</subject><ispartof>Science (American Association for the Advancement of Science), 1994-09, Vol.265 (5177), p.1405-1412</ispartof><rights>Copyright 1994 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2884821$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2884821$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,58000,58233</link.rule.ids></links><search><creatorcontrib>Coleman, David E.</creatorcontrib><creatorcontrib>Berghuis, Albert M.</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>Linder, Maurine E.</creatorcontrib><creatorcontrib>Gilman, Alfred G.</creatorcontrib><creatorcontrib>Sprang, Stephen R.</creatorcontrib><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><title>Science (American Association for the Advancement of Science)</title><description>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</description><subject>Atoms</subject><subject>Crystals</subject><subject>Datasets</subject><subject>Electron density</subject><subject>Hydrogen bonds</subject><subject>Hydrolysis</subject><subject>Molecules</subject><subject>Nucleotides</subject><subject>Oxygen</subject><subject>Phosphates</subject><subject>Research Article</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1LwzAchoMoWKdnLx5y2LXzl6RJk-MougkTBSd4EEqWpjSlHyPJhCL-747p6YH3eXkQuiWwIISK-2CcHYxdSMgZlewMJQQUTxUFdo4SACbSo-KX6CqEFuDoFEvQx1v0BxMP3gY81nhpovuyuBiHevS9jm4cTvtqXn67T93tG01-5lgPFY6Nxc_WNHpwoT99tq94PVV-7KbgwjW6qHUX7M0_Z-j98WFbrNPNy-qpWG7SloCIqdKSC5YrUgkjM51JDhKI4ZRnuZKVrnSWSwo7QWW-I1YZw6whwG1GlRDMsBm6--u2IY6-3HvXaz-VVMpMUsJ-AaoMUNo</recordid><startdate>19940902</startdate><enddate>19940902</enddate><creator>Coleman, David E.</creator><creator>Berghuis, Albert M.</creator><creator>Lee, Ethan</creator><creator>Linder, Maurine E.</creator><creator>Gilman, Alfred G.</creator><creator>Sprang, Stephen R.</creator><general>American Society for the Advancement of Science</general><scope/></search><sort><creationdate>19940902</creationdate><title>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</title><author>Coleman, David E. ; Berghuis, Albert M. ; Lee, Ethan ; Linder, Maurine E. ; Gilman, Alfred G. ; Sprang, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j106t-9a8563791d6c84a4850801c5254798dada47820b6287b1e9cc3ec105e429663c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Atoms</topic><topic>Crystals</topic><topic>Datasets</topic><topic>Electron density</topic><topic>Hydrogen bonds</topic><topic>Hydrolysis</topic><topic>Molecules</topic><topic>Nucleotides</topic><topic>Oxygen</topic><topic>Phosphates</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, David E.</creatorcontrib><creatorcontrib>Berghuis, Albert M.</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>Linder, Maurine E.</creatorcontrib><creatorcontrib>Gilman, Alfred G.</creatorcontrib><creatorcontrib>Sprang, Stephen R.</creatorcontrib><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, David E.</au><au>Berghuis, Albert M.</au><au>Lee, Ethan</au><au>Linder, Maurine E.</au><au>Gilman, Alfred G.</au><au>Sprang, Stephen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>1994-09-02</date><risdate>1994</risdate><volume>265</volume><issue>5177</issue><spage>1405</spage><epage>1412</epage><pages>1405-1412</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein α subunit-p21$^{ras}$ superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTPγS and GDP·AIF$_4^-$ complexes formed by the G protein g$_{i\alpha1}$ demonstrate specific roles in transition-state stabilization for two highly conserved residues Glutamine$^{204}$ (Gln$^{61}$ in p21$^{ras}$) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G$_\alpha$ family, this residue may account for the higher hydrolytic rate of $G_\alpha$ proteins relative to those of the p21$^{ras}$ family members. The fold of G$_{i\alpha1}$ differs from that of the homologous G$_{t\alpha}$ subunit in the conformation of a helix-loop sequence located in the α-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP$\lambda$S-G$_{i\alpha1}$, suggesting a mechanism that may promote release of the βγ subunit complex when the α subunit is activated by GTP.</abstract><pub>American Society for the Advancement of Science</pub><doi>10.1126/science.8073283</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1994-09, Vol.265 (5177), p.1405-1412 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_jstor_primary_2884821 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atoms Crystals Datasets Electron density Hydrogen bonds Hydrolysis Molecules Nucleotides Oxygen Phosphates Research Article |
title | Structures of Active Conformations of G$_{i\alpha1}$ and the Mechanism of GTP Hydrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20Active%20Conformations%20of%20G$_%7Bi%5Calpha1%7D$%20and%20the%20Mechanism%20of%20GTP%20Hydrolysis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Coleman,%20David%20E.&rft.date=1994-09-02&rft.volume=265&rft.issue=5177&rft.spage=1405&rft.epage=1412&rft.pages=1405-1412&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.8073283&rft_dat=%3Cjstor%3E2884821%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2884821&rfr_iscdi=true |