Confidence Intervals for a Discrete Population Median

In this article, we consider the problem of constructing confidence intervals for a population median when the underlying population is discrete. We describe seven methods of assigning confidence levels to order statistic based confidence intervals, all of which are easy to implement. A simulation s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 2008-02, Vol.62 (1), p.32-39
Hauptverfasser: Larocque, Denis, Randles, Ronald H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 32
container_title The American statistician
container_volume 62
creator Larocque, Denis
Randles, Ronald H
description In this article, we consider the problem of constructing confidence intervals for a population median when the underlying population is discrete. We describe seven methods of assigning confidence levels to order statistic based confidence intervals, all of which are easy to implement. A simulation study shows that, with discrete populations, it is possible to obtain consistently more accurate confidence levels and shorter intervals compared to the ones reported by the classical method which is implemented in commercial software. More precisely, the best results are obtained by inverting a two-tailed sign test that properly takes into account tied observations. Some real data examples illustrate the use of these confidence intervals.
doi_str_mv 10.1198/000313008X269738
format Article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_27643962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27643962</jstor_id><sourcerecordid>27643962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-ab811b638e448373c602fbe93eb6d59cf8867458f156f1089e629aa456df41ad3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7N8IguBzNOxlcSeujUNGFgrshk0lgyjSpSar035syVUFwdbmc755zOQCcIniJUCWvIIQEEQjlG-aVIHIPjBAjosSCoH0w2spl1tkhOIpxkVcoOB4BNvHOdq1x2hQzl0z4UH0srA-FKqZd1MEkUzz71bpXqfOueDRtp9wxOLCZMye7OQavd7cvk4dy_nQ_m9zMS00ETaVqJEINJ9JQKokgmkNsG1MR0_CWVdpKyQVl0iLGLYKyMhxXSlHGW0uRaskYnA--q-Df1yameuHXweXIGmNJSYUZzhAcIB18jMHYehW6pQqbGsF62039t5t8crHzVVGr3gbldBd_7jCENFvzzJ0N3CImH351wXM230ZfD3rncmVL9elD39ZJbXofvk3Jv198AZyMfdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228439252</pqid></control><display><type>article</type><title>Confidence Intervals for a Discrete Population Median</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Larocque, Denis ; Randles, Ronald H</creator><creatorcontrib>Larocque, Denis ; Randles, Ronald H</creatorcontrib><description>In this article, we consider the problem of constructing confidence intervals for a population median when the underlying population is discrete. We describe seven methods of assigning confidence levels to order statistic based confidence intervals, all of which are easy to implement. A simulation study shows that, with discrete populations, it is possible to obtain consistently more accurate confidence levels and shorter intervals compared to the ones reported by the classical method which is implemented in commercial software. More precisely, the best results are obtained by inverting a two-tailed sign test that properly takes into account tied observations. Some real data examples illustrate the use of these confidence intervals.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1198/000313008X269738</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Binomials ; Combinatorics ; Confidence interval ; Confidence intervals ; Confidence level ; Discrete distribution ; Disk stars ; Exact sciences and technology ; General topics ; Integers ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood method ; Median ; Multinomial distribution ; Nonparametric inference ; P values ; Parametric inference ; Population estimates ; Probabilities ; Probability and statistics ; Sample size ; Sciences and techniques of general use ; Sign test ; Statistical median ; Statistics ; Tied observations</subject><ispartof>The American statistician, 2008-02, Vol.62 (1), p.32-39</ispartof><rights>American Statistical Association 2008</rights><rights>Copyright 2008 American Statistical Association</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Statistical Association Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-ab811b638e448373c602fbe93eb6d59cf8867458f156f1089e629aa456df41ad3</citedby><cites>FETCH-LOGICAL-c374t-ab811b638e448373c602fbe93eb6d59cf8867458f156f1089e629aa456df41ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27643962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27643962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20049256$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Larocque, Denis</creatorcontrib><creatorcontrib>Randles, Ronald H</creatorcontrib><title>Confidence Intervals for a Discrete Population Median</title><title>The American statistician</title><description>In this article, we consider the problem of constructing confidence intervals for a population median when the underlying population is discrete. We describe seven methods of assigning confidence levels to order statistic based confidence intervals, all of which are easy to implement. A simulation study shows that, with discrete populations, it is possible to obtain consistently more accurate confidence levels and shorter intervals compared to the ones reported by the classical method which is implemented in commercial software. More precisely, the best results are obtained by inverting a two-tailed sign test that properly takes into account tied observations. Some real data examples illustrate the use of these confidence intervals.</description><subject>Binomials</subject><subject>Combinatorics</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Confidence level</subject><subject>Discrete distribution</subject><subject>Disk stars</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Median</subject><subject>Multinomial distribution</subject><subject>Nonparametric inference</subject><subject>P values</subject><subject>Parametric inference</subject><subject>Population estimates</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Sign test</subject><subject>Statistical median</subject><subject>Statistics</subject><subject>Tied observations</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7N8IguBzNOxlcSeujUNGFgrshk0lgyjSpSar035syVUFwdbmc755zOQCcIniJUCWvIIQEEQjlG-aVIHIPjBAjosSCoH0w2spl1tkhOIpxkVcoOB4BNvHOdq1x2hQzl0z4UH0srA-FKqZd1MEkUzz71bpXqfOueDRtp9wxOLCZMye7OQavd7cvk4dy_nQ_m9zMS00ETaVqJEINJ9JQKokgmkNsG1MR0_CWVdpKyQVl0iLGLYKyMhxXSlHGW0uRaskYnA--q-Df1yameuHXweXIGmNJSYUZzhAcIB18jMHYehW6pQqbGsF62039t5t8crHzVVGr3gbldBd_7jCENFvzzJ0N3CImH351wXM230ZfD3rncmVL9elD39ZJbXofvk3Jv198AZyMfdw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Larocque, Denis</creator><creator>Randles, Ronald H</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080201</creationdate><title>Confidence Intervals for a Discrete Population Median</title><author>Larocque, Denis ; Randles, Ronald H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-ab811b638e448373c602fbe93eb6d59cf8867458f156f1089e629aa456df41ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binomials</topic><topic>Combinatorics</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Confidence level</topic><topic>Discrete distribution</topic><topic>Disk stars</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Median</topic><topic>Multinomial distribution</topic><topic>Nonparametric inference</topic><topic>P values</topic><topic>Parametric inference</topic><topic>Population estimates</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Sign test</topic><topic>Statistical median</topic><topic>Statistics</topic><topic>Tied observations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larocque, Denis</creatorcontrib><creatorcontrib>Randles, Ronald H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larocque, Denis</au><au>Randles, Ronald H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Intervals for a Discrete Population Median</atitle><jtitle>The American statistician</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>62</volume><issue>1</issue><spage>32</spage><epage>39</epage><pages>32-39</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>In this article, we consider the problem of constructing confidence intervals for a population median when the underlying population is discrete. We describe seven methods of assigning confidence levels to order statistic based confidence intervals, all of which are easy to implement. A simulation study shows that, with discrete populations, it is possible to obtain consistently more accurate confidence levels and shorter intervals compared to the ones reported by the classical method which is implemented in commercial software. More precisely, the best results are obtained by inverting a two-tailed sign test that properly takes into account tied observations. Some real data examples illustrate the use of these confidence intervals.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/000313008X269738</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2008-02, Vol.62 (1), p.32-39
issn 0003-1305
1537-2731
language eng
recordid cdi_jstor_primary_27643962
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Binomials
Combinatorics
Confidence interval
Confidence intervals
Confidence level
Discrete distribution
Disk stars
Exact sciences and technology
General topics
Integers
Mathematics
Maximum likelihood
Maximum likelihood estimation
Maximum likelihood method
Median
Multinomial distribution
Nonparametric inference
P values
Parametric inference
Population estimates
Probabilities
Probability and statistics
Sample size
Sciences and techniques of general use
Sign test
Statistical median
Statistics
Tied observations
title Confidence Intervals for a Discrete Population Median
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Intervals%20for%20a%20Discrete%20Population%20Median&rft.jtitle=The%20American%20statistician&rft.au=Larocque,%20Denis&rft.date=2008-02-01&rft.volume=62&rft.issue=1&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1198/000313008X269738&rft_dat=%3Cjstor_infor%3E27643962%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228439252&rft_id=info:pmid/&rft_jstor_id=27643962&rfr_iscdi=true