The Distribution of Robust Distances

Mahalanobis-type distances in which the shape matrix is derived from a consistent, high-breakdown robust multivariate location and scale estimator have an asymptotic chi-squared distribution as is the case with those derived from the ordinary covariance matrix. For example, Rousseeuw's minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2005-12, Vol.14 (4), p.928-946
Hauptverfasser: Hardin, Johanna, Rocke, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 4
container_start_page 928
container_title Journal of computational and graphical statistics
container_volume 14
creator Hardin, Johanna
Rocke, David M
description Mahalanobis-type distances in which the shape matrix is derived from a consistent, high-breakdown robust multivariate location and scale estimator have an asymptotic chi-squared distribution as is the case with those derived from the ordinary covariance matrix. For example, Rousseeuw's minimum covariance determinant (MCD) is a robust estimator with a high breakdown. However, even in quite large samples, the chi-squared approximation to the distances of the sample data from the MCD center with respect to the MCD shape is poor. We provide an improved F approximation that gives accurate outlier rejection points for various sample sizes.
doi_str_mv 10.1198/106186005X77685
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_27594157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27594157</jstor_id><sourcerecordid>27594157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-da545767baaffa94c5e4114d46cb2e0bd96352cface199c99257aef04c2a6ec23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK6ePQlFvNbNpPlovMmuX7AgyAreQpom2KXbrEmK7H9v14oHwdMM83vvDTyEzgFfA8hyBphDyTFmb0Lwkh2gCbBC5EQAOxz2geZ7fIxOYlxjjIFLMUFXq3ebLZqYQlP1qfFd5l324qs-pu-z7oyNp-jI6Tbas585Ra_3d6v5Y758fnia3y5zQ0mZ8lozygQXldbOaUkNsxSA1pSbilhc1ZIXjBinjQUpjZSECW0dpoZobg0ppuhyzN0G_9HbmNTa96EbXipSMCFowfei2SgywccYrFPb0Gx02CnAat-E-tPE4LgYHeuYfPiVE8EkBSYGfjPypnM-bPSnD22tkt61PrgwNNBEVfwX_gX7F2vG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235774362</pqid></control><display><type>article</type><title>The Distribution of Robust Distances</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hardin, Johanna ; Rocke, David M</creator><creatorcontrib>Hardin, Johanna ; Rocke, David M</creatorcontrib><description>Mahalanobis-type distances in which the shape matrix is derived from a consistent, high-breakdown robust multivariate location and scale estimator have an asymptotic chi-squared distribution as is the case with those derived from the ordinary covariance matrix. For example, Rousseeuw's minimum covariance determinant (MCD) is a robust estimator with a high breakdown. However, even in quite large samples, the chi-squared approximation to the distances of the sample data from the MCD center with respect to the MCD shape is poor. We provide an improved F approximation that gives accurate outlier rejection points for various sample sizes.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/106186005X77685</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Approximation ; Asymptotic value ; Covariance ; Covariance matrices ; Degrees of freedom ; Estimators ; Graph algorithms ; Mahalanobis squared distance ; Minimum covariance determinant ; Multivariate analysis ; Outlier detection ; Outliers ; Perceptual localization ; Robust estimation ; Sampling distributions ; Statistics ; Variance analysis</subject><ispartof>Journal of computational and graphical statistics, 2005-12, Vol.14 (4), p.928-946</ispartof><rights>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2005</rights><rights>Copyright 2005 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America</rights><rights>Copyright American Statistical Association Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-da545767baaffa94c5e4114d46cb2e0bd96352cface199c99257aef04c2a6ec23</citedby><cites>FETCH-LOGICAL-c428t-da545767baaffa94c5e4114d46cb2e0bd96352cface199c99257aef04c2a6ec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27594157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27594157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Hardin, Johanna</creatorcontrib><creatorcontrib>Rocke, David M</creatorcontrib><title>The Distribution of Robust Distances</title><title>Journal of computational and graphical statistics</title><description>Mahalanobis-type distances in which the shape matrix is derived from a consistent, high-breakdown robust multivariate location and scale estimator have an asymptotic chi-squared distribution as is the case with those derived from the ordinary covariance matrix. For example, Rousseeuw's minimum covariance determinant (MCD) is a robust estimator with a high breakdown. However, even in quite large samples, the chi-squared approximation to the distances of the sample data from the MCD center with respect to the MCD shape is poor. We provide an improved F approximation that gives accurate outlier rejection points for various sample sizes.</description><subject>Approximation</subject><subject>Asymptotic value</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Estimators</subject><subject>Graph algorithms</subject><subject>Mahalanobis squared distance</subject><subject>Minimum covariance determinant</subject><subject>Multivariate analysis</subject><subject>Outlier detection</subject><subject>Outliers</subject><subject>Perceptual localization</subject><subject>Robust estimation</subject><subject>Sampling distributions</subject><subject>Statistics</subject><subject>Variance analysis</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK6ePQlFvNbNpPlovMmuX7AgyAreQpom2KXbrEmK7H9v14oHwdMM83vvDTyEzgFfA8hyBphDyTFmb0Lwkh2gCbBC5EQAOxz2geZ7fIxOYlxjjIFLMUFXq3ebLZqYQlP1qfFd5l324qs-pu-z7oyNp-jI6Tbas585Ra_3d6v5Y758fnia3y5zQ0mZ8lozygQXldbOaUkNsxSA1pSbilhc1ZIXjBinjQUpjZSECW0dpoZobg0ppuhyzN0G_9HbmNTa96EbXipSMCFowfei2SgywccYrFPb0Gx02CnAat-E-tPE4LgYHeuYfPiVE8EkBSYGfjPypnM-bPSnD22tkt61PrgwNNBEVfwX_gX7F2vG</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Hardin, Johanna</creator><creator>Rocke, David M</creator><general>Taylor &amp; Francis</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20051201</creationdate><title>The Distribution of Robust Distances</title><author>Hardin, Johanna ; Rocke, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-da545767baaffa94c5e4114d46cb2e0bd96352cface199c99257aef04c2a6ec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Asymptotic value</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Estimators</topic><topic>Graph algorithms</topic><topic>Mahalanobis squared distance</topic><topic>Minimum covariance determinant</topic><topic>Multivariate analysis</topic><topic>Outlier detection</topic><topic>Outliers</topic><topic>Perceptual localization</topic><topic>Robust estimation</topic><topic>Sampling distributions</topic><topic>Statistics</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardin, Johanna</creatorcontrib><creatorcontrib>Rocke, David M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardin, Johanna</au><au>Rocke, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of Robust Distances</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>14</volume><issue>4</issue><spage>928</spage><epage>946</epage><pages>928-946</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>Mahalanobis-type distances in which the shape matrix is derived from a consistent, high-breakdown robust multivariate location and scale estimator have an asymptotic chi-squared distribution as is the case with those derived from the ordinary covariance matrix. For example, Rousseeuw's minimum covariance determinant (MCD) is a robust estimator with a high breakdown. However, even in quite large samples, the chi-squared approximation to the distances of the sample data from the MCD center with respect to the MCD shape is poor. We provide an improved F approximation that gives accurate outlier rejection points for various sample sizes.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/106186005X77685</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2005-12, Vol.14 (4), p.928-946
issn 1061-8600
1537-2715
language eng
recordid cdi_jstor_primary_27594157
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Approximation
Asymptotic value
Covariance
Covariance matrices
Degrees of freedom
Estimators
Graph algorithms
Mahalanobis squared distance
Minimum covariance determinant
Multivariate analysis
Outlier detection
Outliers
Perceptual localization
Robust estimation
Sampling distributions
Statistics
Variance analysis
title The Distribution of Robust Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20Robust%20Distances&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Hardin,%20Johanna&rft.date=2005-12-01&rft.volume=14&rft.issue=4&rft.spage=928&rft.epage=946&rft.pages=928-946&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/106186005X77685&rft_dat=%3Cjstor_proqu%3E27594157%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235774362&rft_id=info:pmid/&rft_jstor_id=27594157&rfr_iscdi=true