Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis

A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2019-11, Vol.67 (6), p.1628-1658
Hauptverfasser: Parmeter, Christopher F., Zelenyuk, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1658
container_issue 6
container_start_page 1628
container_title Operations research
container_volume 67
creator Parmeter, Christopher F.
Zelenyuk, Valentin
description A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.
doi_str_mv 10.1287/opre.2018.1831
format Article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_27295958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27295958</jstor_id><sourcerecordid>27295958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</originalsourceid><addsrcrecordid>eNqFkMtLwzAAxoMoOKdXb0LAc2uebXoc0_lg4MEH3kLaJi5jTWqSCfvvbal49fQdvgcfPwAuMcoxEeWN74POCcIix4LiIzDDnBQZZwU9BjOEKMpowT5OwVmMW4RQxQs-A09L39XWWfcJ00bDdxvSXkfoDXxJvtmomGwDV8G7ZHWAyrXwViUF79y33vm-0y7BhVO7Q7TxHJwYtYv64lfn4G1197p8yNbP94_LxTprGBcp47pEVHCOCRal1kyw1lBiKkRwRXGLKWaFaEXLq7JVTJu6aSirGFalqamuOZ2D62m3D_5rOJvk1u_DcCJKQnGFCyYKNqTyKdUEH2PQRvbBdiocJEZy5CVHXnLkJUdeQ-FqKmxj8uEvTUpS8YqLwc8m3zrjQxf_2_sBUo12NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319164864</pqid></control><display><type>article</type><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Parmeter, Christopher F. ; Zelenyuk, Valentin</creator><creatorcontrib>Parmeter, Christopher F. ; Zelenyuk, Valentin</creatorcontrib><description>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2018.1831</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>additive ; Axioms ; bandwidth ; Computer simulation ; Data analysis ; data analysis: statistics ; Data envelopment analysis ; Decision making units ; Empirical analysis ; Estimators ; heteroskedasticity ; kernel ; Literature reviews ; measurement error ; Methods ; nonparametric ; nonparametric: statistics ; Operations research ; Optimization ; partly linear ; statistical inference: queues ; Statistical methods ; Stochastic models</subject><ispartof>Operations research, 2019-11, Vol.67 (6), p.1628-1658</ispartof><rights>Copyright: © 2019 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov/Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</citedby><cites>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</cites><orcidid>0000-0001-6123-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2018.1831$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3678,27903,27904,62592</link.rule.ids></links><search><creatorcontrib>Parmeter, Christopher F.</creatorcontrib><creatorcontrib>Zelenyuk, Valentin</creatorcontrib><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><title>Operations research</title><description>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</description><subject>additive</subject><subject>Axioms</subject><subject>bandwidth</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>data analysis: statistics</subject><subject>Data envelopment analysis</subject><subject>Decision making units</subject><subject>Empirical analysis</subject><subject>Estimators</subject><subject>heteroskedasticity</subject><subject>kernel</subject><subject>Literature reviews</subject><subject>measurement error</subject><subject>Methods</subject><subject>nonparametric</subject><subject>nonparametric: statistics</subject><subject>Operations research</subject><subject>Optimization</subject><subject>partly linear</subject><subject>statistical inference: queues</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLwzAAxoMoOKdXb0LAc2uebXoc0_lg4MEH3kLaJi5jTWqSCfvvbal49fQdvgcfPwAuMcoxEeWN74POCcIix4LiIzDDnBQZZwU9BjOEKMpowT5OwVmMW4RQxQs-A09L39XWWfcJ00bDdxvSXkfoDXxJvtmomGwDV8G7ZHWAyrXwViUF79y33vm-0y7BhVO7Q7TxHJwYtYv64lfn4G1197p8yNbP94_LxTprGBcp47pEVHCOCRal1kyw1lBiKkRwRXGLKWaFaEXLq7JVTJu6aSirGFalqamuOZ2D62m3D_5rOJvk1u_DcCJKQnGFCyYKNqTyKdUEH2PQRvbBdiocJEZy5CVHXnLkJUdeQ-FqKmxj8uEvTUpS8YqLwc8m3zrjQxf_2_sBUo12NA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Parmeter, Christopher F.</creator><creator>Zelenyuk, Valentin</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6123-0107</orcidid></search><sort><creationdate>20191101</creationdate><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><author>Parmeter, Christopher F. ; Zelenyuk, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>additive</topic><topic>Axioms</topic><topic>bandwidth</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>data analysis: statistics</topic><topic>Data envelopment analysis</topic><topic>Decision making units</topic><topic>Empirical analysis</topic><topic>Estimators</topic><topic>heteroskedasticity</topic><topic>kernel</topic><topic>Literature reviews</topic><topic>measurement error</topic><topic>Methods</topic><topic>nonparametric</topic><topic>nonparametric: statistics</topic><topic>Operations research</topic><topic>Optimization</topic><topic>partly linear</topic><topic>statistical inference: queues</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmeter, Christopher F.</creatorcontrib><creatorcontrib>Zelenyuk, Valentin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmeter, Christopher F.</au><au>Zelenyuk, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</atitle><jtitle>Operations research</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>67</volume><issue>6</issue><spage>1628</spage><epage>1658</epage><pages>1628-1658</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2018.1831</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6123-0107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2019-11, Vol.67 (6), p.1628-1658
issn 0030-364X
1526-5463
language eng
recordid cdi_jstor_primary_27295958
source INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects additive
Axioms
bandwidth
Computer simulation
Data analysis
data analysis: statistics
Data envelopment analysis
Decision making units
Empirical analysis
Estimators
heteroskedasticity
kernel
Literature reviews
measurement error
Methods
nonparametric
nonparametric: statistics
Operations research
Optimization
partly linear
statistical inference: queues
Statistical methods
Stochastic models
title Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20the%20Virtues%20of%20Stochastic%20Frontier%20and%20Data%20Envelopment%20Analysis&rft.jtitle=Operations%20research&rft.au=Parmeter,%20Christopher%20F.&rft.date=2019-11-01&rft.volume=67&rft.issue=6&rft.spage=1628&rft.epage=1658&rft.pages=1628-1658&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2018.1831&rft_dat=%3Cjstor_infor%3E27295958%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319164864&rft_id=info:pmid/&rft_jstor_id=27295958&rfr_iscdi=true