Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis
A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistic...
Gespeichert in:
Veröffentlicht in: | Operations research 2019-11, Vol.67 (6), p.1628-1658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1658 |
---|---|
container_issue | 6 |
container_start_page | 1628 |
container_title | Operations research |
container_volume | 67 |
creator | Parmeter, Christopher F. Zelenyuk, Valentin |
description | A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here. |
doi_str_mv | 10.1287/opre.2018.1831 |
format | Article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_27295958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27295958</jstor_id><sourcerecordid>27295958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</originalsourceid><addsrcrecordid>eNqFkMtLwzAAxoMoOKdXb0LAc2uebXoc0_lg4MEH3kLaJi5jTWqSCfvvbal49fQdvgcfPwAuMcoxEeWN74POCcIix4LiIzDDnBQZZwU9BjOEKMpowT5OwVmMW4RQxQs-A09L39XWWfcJ00bDdxvSXkfoDXxJvtmomGwDV8G7ZHWAyrXwViUF79y33vm-0y7BhVO7Q7TxHJwYtYv64lfn4G1197p8yNbP94_LxTprGBcp47pEVHCOCRal1kyw1lBiKkRwRXGLKWaFaEXLq7JVTJu6aSirGFalqamuOZ2D62m3D_5rOJvk1u_DcCJKQnGFCyYKNqTyKdUEH2PQRvbBdiocJEZy5CVHXnLkJUdeQ-FqKmxj8uEvTUpS8YqLwc8m3zrjQxf_2_sBUo12NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319164864</pqid></control><display><type>article</type><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Parmeter, Christopher F. ; Zelenyuk, Valentin</creator><creatorcontrib>Parmeter, Christopher F. ; Zelenyuk, Valentin</creatorcontrib><description>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2018.1831</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>additive ; Axioms ; bandwidth ; Computer simulation ; Data analysis ; data analysis: statistics ; Data envelopment analysis ; Decision making units ; Empirical analysis ; Estimators ; heteroskedasticity ; kernel ; Literature reviews ; measurement error ; Methods ; nonparametric ; nonparametric: statistics ; Operations research ; Optimization ; partly linear ; statistical inference: queues ; Statistical methods ; Stochastic models</subject><ispartof>Operations research, 2019-11, Vol.67 (6), p.1628-1658</ispartof><rights>Copyright: © 2019 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov/Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</citedby><cites>FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</cites><orcidid>0000-0001-6123-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2018.1831$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3678,27903,27904,62592</link.rule.ids></links><search><creatorcontrib>Parmeter, Christopher F.</creatorcontrib><creatorcontrib>Zelenyuk, Valentin</creatorcontrib><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><title>Operations research</title><description>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</description><subject>additive</subject><subject>Axioms</subject><subject>bandwidth</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>data analysis: statistics</subject><subject>Data envelopment analysis</subject><subject>Decision making units</subject><subject>Empirical analysis</subject><subject>Estimators</subject><subject>heteroskedasticity</subject><subject>kernel</subject><subject>Literature reviews</subject><subject>measurement error</subject><subject>Methods</subject><subject>nonparametric</subject><subject>nonparametric: statistics</subject><subject>Operations research</subject><subject>Optimization</subject><subject>partly linear</subject><subject>statistical inference: queues</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLwzAAxoMoOKdXb0LAc2uebXoc0_lg4MEH3kLaJi5jTWqSCfvvbal49fQdvgcfPwAuMcoxEeWN74POCcIix4LiIzDDnBQZZwU9BjOEKMpowT5OwVmMW4RQxQs-A09L39XWWfcJ00bDdxvSXkfoDXxJvtmomGwDV8G7ZHWAyrXwViUF79y33vm-0y7BhVO7Q7TxHJwYtYv64lfn4G1197p8yNbP94_LxTprGBcp47pEVHCOCRal1kyw1lBiKkRwRXGLKWaFaEXLq7JVTJu6aSirGFalqamuOZ2D62m3D_5rOJvk1u_DcCJKQnGFCyYKNqTyKdUEH2PQRvbBdiocJEZy5CVHXnLkJUdeQ-FqKmxj8uEvTUpS8YqLwc8m3zrjQxf_2_sBUo12NA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Parmeter, Christopher F.</creator><creator>Zelenyuk, Valentin</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6123-0107</orcidid></search><sort><creationdate>20191101</creationdate><title>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</title><author>Parmeter, Christopher F. ; Zelenyuk, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-5e70385512187ee484df32f9021931d131468d8d597da4efbcc34941a7fb3eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>additive</topic><topic>Axioms</topic><topic>bandwidth</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>data analysis: statistics</topic><topic>Data envelopment analysis</topic><topic>Decision making units</topic><topic>Empirical analysis</topic><topic>Estimators</topic><topic>heteroskedasticity</topic><topic>kernel</topic><topic>Literature reviews</topic><topic>measurement error</topic><topic>Methods</topic><topic>nonparametric</topic><topic>nonparametric: statistics</topic><topic>Operations research</topic><topic>Optimization</topic><topic>partly linear</topic><topic>statistical inference: queues</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmeter, Christopher F.</creatorcontrib><creatorcontrib>Zelenyuk, Valentin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmeter, Christopher F.</au><au>Zelenyuk, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis</atitle><jtitle>Operations research</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>67</volume><issue>6</issue><spage>1628</spage><epage>1658</epage><pages>1628-1658</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2018.1831</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6123-0107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 2019-11, Vol.67 (6), p.1628-1658 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_jstor_primary_27295958 |
source | INFORMS PubsOnLine; EBSCOhost Business Source Complete |
subjects | additive Axioms bandwidth Computer simulation Data analysis data analysis: statistics Data envelopment analysis Decision making units Empirical analysis Estimators heteroskedasticity kernel Literature reviews measurement error Methods nonparametric nonparametric: statistics Operations research Optimization partly linear statistical inference: queues Statistical methods Stochastic models |
title | Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20the%20Virtues%20of%20Stochastic%20Frontier%20and%20Data%20Envelopment%20Analysis&rft.jtitle=Operations%20research&rft.au=Parmeter,%20Christopher%20F.&rft.date=2019-11-01&rft.volume=67&rft.issue=6&rft.spage=1628&rft.epage=1658&rft.pages=1628-1658&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2018.1831&rft_dat=%3Cjstor_infor%3E27295958%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319164864&rft_id=info:pmid/&rft_jstor_id=27295958&rfr_iscdi=true |