LAMOST Fiber Positioning Unit Detection Based on Deep Learning
The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial paramet...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2021-11, Vol.133 (1029), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1029 |
container_start_page | 1 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 133 |
creator | Zhou, Ming Lv, Guanru Li, Jian Zhou, Zengxiang Liu, Zhigang Wang, Jianping Bai, Zhongrui Zhang, Yong Tian, Yuan Wang, Mengxin Wang, Shuqing Hu, Hongzhuan Zhai, Chao Chu, Jiaru Dong, Yiqiao Yuan, Hailong Zhao, Yongheng Chu, Yaoquan Zhang, Haotong |
description | The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27206436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27206436</jstor_id><sourcerecordid>27206436</sourcerecordid><originalsourceid>FETCH-jstor_primary_272064363</originalsourceid><addsrcrecordid>eNpjYuA0NDW20DW2MDdmYeA0MDAw0TUzsjDgYOAqLs4yMDA0tDA04GSw83H09Q8OUXDLTEotUgjIL84syczPy8xLVwjNyyxRcEktSU0GiSg4JRanpigAGS6pqQUKPqmJRSBVPAysaYk5xam8UJqbQdbNNcTZQzeruCS_KL6gKDM3sagy3sjcyMDMxNjMmJA8AEsrM-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Jstor Complete Legacy</source><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creator><creatorcontrib>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creatorcontrib><description>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><language>eng</language><publisher>IOP Publishing Limited</publisher><subject>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2021-11, Vol.133 (1029), p.1-9</ispartof><rights>2021. The Astronomical Society of the Pacific</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27206436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27206436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57992,58225</link.rule.ids></links><search><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><title>Publications of the Astronomical Society of the Pacific</title><description>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</description><subject>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDW20DW2MDdmYeA0MDAw0TUzsjDgYOAqLs4yMDA0tDA04GSw83H09Q8OUXDLTEotUgjIL84syczPy8xLVwjNyyxRcEktSU0GiSg4JRanpigAGS6pqQUKPqmJRSBVPAysaYk5xam8UJqbQdbNNcTZQzeruCS_KL6gKDM3sagy3sjcyMDMxNjMmJA8AEsrM-Y</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhou, Ming</creator><creator>Lv, Guanru</creator><creator>Li, Jian</creator><creator>Zhou, Zengxiang</creator><creator>Liu, Zhigang</creator><creator>Wang, Jianping</creator><creator>Bai, Zhongrui</creator><creator>Zhang, Yong</creator><creator>Tian, Yuan</creator><creator>Wang, Mengxin</creator><creator>Wang, Shuqing</creator><creator>Hu, Hongzhuan</creator><creator>Zhai, Chao</creator><creator>Chu, Jiaru</creator><creator>Dong, Yiqiao</creator><creator>Yuan, Hailong</creator><creator>Zhao, Yongheng</creator><creator>Chu, Yaoquan</creator><creator>Zhang, Haotong</creator><general>IOP Publishing Limited</general><scope/></search><sort><creationdate>20211101</creationdate><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><author>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_272064363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming</au><au>Lv, Guanru</au><au>Li, Jian</au><au>Zhou, Zengxiang</au><au>Liu, Zhigang</au><au>Wang, Jianping</au><au>Bai, Zhongrui</au><au>Zhang, Yong</au><au>Tian, Yuan</au><au>Wang, Mengxin</au><au>Wang, Shuqing</au><au>Hu, Hongzhuan</au><au>Zhai, Chao</au><au>Chu, Jiaru</au><au>Dong, Yiqiao</au><au>Yuan, Hailong</au><au>Zhao, Yongheng</au><au>Chu, Yaoquan</au><au>Zhang, Haotong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>133</volume><issue>1029</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</abstract><pub>IOP Publishing Limited</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2021-11, Vol.133 (1029), p.1-9 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_jstor_primary_27206436 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Jstor Complete Legacy; Institute of Physics Journals; Alma/SFX Local Collection |
subjects | Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization |
title | LAMOST Fiber Positioning Unit Detection Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAMOST%20Fiber%20Positioning%20Unit%20Detection%20Based%20on%20Deep%20Learning&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Zhou,%20Ming&rft.date=2021-11-01&rft.volume=133&rft.issue=1029&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/&rft_dat=%3Cjstor%3E27206436%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27206436&rfr_iscdi=true |