LAMOST Fiber Positioning Unit Detection Based on Deep Learning

The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2021-11, Vol.133 (1029), p.1-9
Hauptverfasser: Zhou, Ming, Lv, Guanru, Li, Jian, Zhou, Zengxiang, Liu, Zhigang, Wang, Jianping, Bai, Zhongrui, Zhang, Yong, Tian, Yuan, Wang, Mengxin, Wang, Shuqing, Hu, Hongzhuan, Zhai, Chao, Chu, Jiaru, Dong, Yiqiao, Yuan, Hailong, Zhao, Yongheng, Chu, Yaoquan, Zhang, Haotong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1029
container_start_page 1
container_title Publications of the Astronomical Society of the Pacific
container_volume 133
creator Zhou, Ming
Lv, Guanru
Li, Jian
Zhou, Zengxiang
Liu, Zhigang
Wang, Jianping
Bai, Zhongrui
Zhang, Yong
Tian, Yuan
Wang, Mengxin
Wang, Shuqing
Hu, Hongzhuan
Zhai, Chao
Chu, Jiaru
Dong, Yiqiao
Yuan, Hailong
Zhao, Yongheng
Chu, Yaoquan
Zhang, Haotong
description The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27206436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27206436</jstor_id><sourcerecordid>27206436</sourcerecordid><originalsourceid>FETCH-jstor_primary_272064363</originalsourceid><addsrcrecordid>eNpjYuA0NDW20DW2MDdmYeA0MDAw0TUzsjDgYOAqLs4yMDA0tDA04GSw83H09Q8OUXDLTEotUgjIL84syczPy8xLVwjNyyxRcEktSU0GiSg4JRanpigAGS6pqQUKPqmJRSBVPAysaYk5xam8UJqbQdbNNcTZQzeruCS_KL6gKDM3sagy3sjcyMDMxNjMmJA8AEsrM-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Jstor Complete Legacy</source><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creator><creatorcontrib>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creatorcontrib><description>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><language>eng</language><publisher>IOP Publishing Limited</publisher><subject>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2021-11, Vol.133 (1029), p.1-9</ispartof><rights>2021. The Astronomical Society of the Pacific</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27206436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27206436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57992,58225</link.rule.ids></links><search><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><title>Publications of the Astronomical Society of the Pacific</title><description>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</description><subject>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDW20DW2MDdmYeA0MDAw0TUzsjDgYOAqLs4yMDA0tDA04GSw83H09Q8OUXDLTEotUgjIL84syczPy8xLVwjNyyxRcEktSU0GiSg4JRanpigAGS6pqQUKPqmJRSBVPAysaYk5xam8UJqbQdbNNcTZQzeruCS_KL6gKDM3sagy3sjcyMDMxNjMmJA8AEsrM-Y</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhou, Ming</creator><creator>Lv, Guanru</creator><creator>Li, Jian</creator><creator>Zhou, Zengxiang</creator><creator>Liu, Zhigang</creator><creator>Wang, Jianping</creator><creator>Bai, Zhongrui</creator><creator>Zhang, Yong</creator><creator>Tian, Yuan</creator><creator>Wang, Mengxin</creator><creator>Wang, Shuqing</creator><creator>Hu, Hongzhuan</creator><creator>Zhai, Chao</creator><creator>Chu, Jiaru</creator><creator>Dong, Yiqiao</creator><creator>Yuan, Hailong</creator><creator>Zhao, Yongheng</creator><creator>Chu, Yaoquan</creator><creator>Zhang, Haotong</creator><general>IOP Publishing Limited</general><scope/></search><sort><creationdate>20211101</creationdate><title>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</title><author>Zhou, Ming ; Lv, Guanru ; Li, Jian ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Bai, Zhongrui ; Zhang, Yong ; Tian, Yuan ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_272064363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming</au><au>Lv, Guanru</au><au>Li, Jian</au><au>Zhou, Zengxiang</au><au>Liu, Zhigang</au><au>Wang, Jianping</au><au>Bai, Zhongrui</au><au>Zhang, Yong</au><au>Tian, Yuan</au><au>Wang, Mengxin</au><au>Wang, Shuqing</au><au>Hu, Hongzhuan</au><au>Zhai, Chao</au><au>Chu, Jiaru</au><au>Dong, Yiqiao</au><au>Yuan, Hailong</au><au>Zhao, Yongheng</au><au>Chu, Yaoquan</au><au>Zhang, Haotong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAMOST Fiber Positioning Unit Detection Based on Deep Learning</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>133</volume><issue>1029</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2°.5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.</abstract><pub>IOP Publishing Limited</pub></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2021-11, Vol.133 (1029), p.1-9
issn 0004-6280
1538-3873
language eng
recordid cdi_jstor_primary_27206436
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Jstor Complete Legacy; Institute of Physics Journals; Alma/SFX Local Collection
subjects Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization
title LAMOST Fiber Positioning Unit Detection Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAMOST%20Fiber%20Positioning%20Unit%20Detection%20Based%20on%20Deep%20Learning&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Zhou,%20Ming&rft.date=2021-11-01&rft.volume=133&rft.issue=1029&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/&rft_dat=%3Cjstor%3E27206436%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27206436&rfr_iscdi=true