Semigroup applications everywhere
Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriat...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2185 |
container_start_page | 1 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 378 |
creator | Nagel, Rainer Rhandi, Abdelaziz |
description | Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes.
The present special issue of Philosophical Transactions includes papers on semigroups and their applications.
This article is part of the theme issue ‘Semigroup applications everywhere’. |
doi_str_mv | 10.1098/rsta.2019.0610rsta20190610 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27101069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27101069</jstor_id><sourcerecordid>27101069</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-2a945d4131085334963def67e20cc4cfbf84c87af8c3c99a8ed0afc59f5eabf3</originalsourceid><addsrcrecordid>eNotjMtOwzAQAC0EEqXwCUiFu8OuX_EeUcVLqsShHLhVrrOGRC2J7ADq30MEp5m5jBDXCBUC-ZtcxlApQKrAIUw1xeRHYoamRqnIqeNf185IC_r1VJyV0gEgOqtm4mrN-_Yt95_DIgzDro1hbPuPsuAvzofvd858Lk5S2BW--OdcrO_vXpaPcvX88LS8XcmO1ChVIGMbgxrBW60NOd1wcjUriNHEtE3eRF-H5KOORMFzAyFFS8ly2CY9F5d_166Mfd4Mud2HfNioGgHBkf4Byr5CTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semigroup applications everywhere</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics & Statistics</source><creator>Nagel, Rainer ; Rhandi, Abdelaziz</creator><creatorcontrib>Nagel, Rainer ; Rhandi, Abdelaziz</creatorcontrib><description>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes.
The present special issue of Philosophical Transactions includes papers on semigroups and their applications.
This article is part of the theme issue ‘Semigroup applications everywhere’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2019.0610rsta20190610</identifier><language>eng</language><publisher>Royal Society</publisher><subject>Introduction</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27101069$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27101069$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids></links><search><creatorcontrib>Nagel, Rainer</creatorcontrib><creatorcontrib>Rhandi, Abdelaziz</creatorcontrib><title>Semigroup applications everywhere</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes.
The present special issue of Philosophical Transactions includes papers on semigroups and their applications.
This article is part of the theme issue ‘Semigroup applications everywhere’.</description><subject>Introduction</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjMtOwzAQAC0EEqXwCUiFu8OuX_EeUcVLqsShHLhVrrOGRC2J7ADq30MEp5m5jBDXCBUC-ZtcxlApQKrAIUw1xeRHYoamRqnIqeNf185IC_r1VJyV0gEgOqtm4mrN-_Yt95_DIgzDro1hbPuPsuAvzofvd858Lk5S2BW--OdcrO_vXpaPcvX88LS8XcmO1ChVIGMbgxrBW60NOd1wcjUriNHEtE3eRF-H5KOORMFzAyFFS8ly2CY9F5d_166Mfd4Mud2HfNioGgHBkf4Byr5CTw</recordid><startdate>20201127</startdate><enddate>20201127</enddate><creator>Nagel, Rainer</creator><creator>Rhandi, Abdelaziz</creator><general>Royal Society</general><scope/></search><sort><creationdate>20201127</creationdate><title>Semigroup applications everywhere</title><author>Nagel, Rainer ; Rhandi, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-2a945d4131085334963def67e20cc4cfbf84c87af8c3c99a8ed0afc59f5eabf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Introduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagel, Rainer</creatorcontrib><creatorcontrib>Rhandi, Abdelaziz</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagel, Rainer</au><au>Rhandi, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroup applications everywhere</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2020-11-27</date><risdate>2020</risdate><volume>378</volume><issue>2185</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes.
The present special issue of Philosophical Transactions includes papers on semigroups and their applications.
This article is part of the theme issue ‘Semigroup applications everywhere’.</abstract><pub>Royal Society</pub><doi>10.1098/rsta.2019.0610rsta20190610</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_27101069 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics |
subjects | Introduction |
title | Semigroup applications everywhere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroup%20applications%20everywhere&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nagel,%20Rainer&rft.date=2020-11-27&rft.volume=378&rft.issue=2185&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2019.0610rsta20190610&rft_dat=%3Cjstor%3E27101069%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27101069&rfr_iscdi=true |