Semigroup applications everywhere

Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6
Hauptverfasser: Nagel, Rainer, Rhandi, Abdelaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2185
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 378
creator Nagel, Rainer
Rhandi, Abdelaziz
description Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes. The present special issue of Philosophical Transactions includes papers on semigroups and their applications. This article is part of the theme issue ‘Semigroup applications everywhere’.
doi_str_mv 10.1098/rsta.2019.0610rsta20190610
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27101069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27101069</jstor_id><sourcerecordid>27101069</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-2a945d4131085334963def67e20cc4cfbf84c87af8c3c99a8ed0afc59f5eabf3</originalsourceid><addsrcrecordid>eNotjMtOwzAQAC0EEqXwCUiFu8OuX_EeUcVLqsShHLhVrrOGRC2J7ADq30MEp5m5jBDXCBUC-ZtcxlApQKrAIUw1xeRHYoamRqnIqeNf185IC_r1VJyV0gEgOqtm4mrN-_Yt95_DIgzDro1hbPuPsuAvzofvd858Lk5S2BW--OdcrO_vXpaPcvX88LS8XcmO1ChVIGMbgxrBW60NOd1wcjUriNHEtE3eRF-H5KOORMFzAyFFS8ly2CY9F5d_166Mfd4Mud2HfNioGgHBkf4Byr5CTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semigroup applications everywhere</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Nagel, Rainer ; Rhandi, Abdelaziz</creator><creatorcontrib>Nagel, Rainer ; Rhandi, Abdelaziz</creatorcontrib><description>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes. The present special issue of Philosophical Transactions includes papers on semigroups and their applications. This article is part of the theme issue ‘Semigroup applications everywhere’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2019.0610rsta20190610</identifier><language>eng</language><publisher>Royal Society</publisher><subject>Introduction</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27101069$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27101069$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids></links><search><creatorcontrib>Nagel, Rainer</creatorcontrib><creatorcontrib>Rhandi, Abdelaziz</creatorcontrib><title>Semigroup applications everywhere</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes. The present special issue of Philosophical Transactions includes papers on semigroups and their applications. This article is part of the theme issue ‘Semigroup applications everywhere’.</description><subject>Introduction</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjMtOwzAQAC0EEqXwCUiFu8OuX_EeUcVLqsShHLhVrrOGRC2J7ADq30MEp5m5jBDXCBUC-ZtcxlApQKrAIUw1xeRHYoamRqnIqeNf185IC_r1VJyV0gEgOqtm4mrN-_Yt95_DIgzDro1hbPuPsuAvzofvd858Lk5S2BW--OdcrO_vXpaPcvX88LS8XcmO1ChVIGMbgxrBW60NOd1wcjUriNHEtE3eRF-H5KOORMFzAyFFS8ly2CY9F5d_166Mfd4Mud2HfNioGgHBkf4Byr5CTw</recordid><startdate>20201127</startdate><enddate>20201127</enddate><creator>Nagel, Rainer</creator><creator>Rhandi, Abdelaziz</creator><general>Royal Society</general><scope/></search><sort><creationdate>20201127</creationdate><title>Semigroup applications everywhere</title><author>Nagel, Rainer ; Rhandi, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-2a945d4131085334963def67e20cc4cfbf84c87af8c3c99a8ed0afc59f5eabf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Introduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagel, Rainer</creatorcontrib><creatorcontrib>Rhandi, Abdelaziz</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagel, Rainer</au><au>Rhandi, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroup applications everywhere</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2020-11-27</date><risdate>2020</risdate><volume>378</volume><issue>2185</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Most dynamical systems arise from partial differential equations (PDEs) that can be represented as an abstract evolution equation on a suitable state space complemented by an initial or final condition. Thus, the system can be written as a Cauchy problem on an abstract function space with appropriate topological structures. To study the qualitative and quantitative properties of the solutions, the theory of one-parameter operator semigroups is a most powerful tool. This approach has been used by many authors and applied to quite different fields, e.g. ordinary and PDEs, nonlinear dynamical systems, control theory, functional differential and Volterra equations, mathematical physics, mathematical biology, stochastic processes. The present special issue of Philosophical Transactions includes papers on semigroups and their applications. This article is part of the theme issue ‘Semigroup applications everywhere’.</abstract><pub>Royal Society</pub><doi>10.1098/rsta.2019.0610rsta20190610</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-11, Vol.378 (2185), p.1-6
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_27101069
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics
subjects Introduction
title Semigroup applications everywhere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroup%20applications%20everywhere&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nagel,%20Rainer&rft.date=2020-11-27&rft.volume=378&rft.issue=2185&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2019.0610rsta20190610&rft_dat=%3Cjstor%3E27101069%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27101069&rfr_iscdi=true