Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model

Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10
1. Verfasser: Bestehorn, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2174
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 378
creator Bestehorn, Michael
description Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27100970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27100970</jstor_id><sourcerecordid>27100970</sourcerecordid><originalsourceid>FETCH-jstor_primary_271009703</originalsourceid><addsrcrecordid>eNqFijsKAjEURYMo-F2C8DYwkMzoDNaiCHZiYSfRvHGe5CNJFMbKPbhDV2IKe6t7OOd22EDMKpHlizLvJi7KWTbnxaHPhiFcOReinOcDVu9kq5Euzef13id0HqRVsEX9IJvcBrVpnI5PIBuiPJGm2EKId0WokoPYINReGgRXgwRFBm0gZzOP6n5OH-MU6jHr1VIHnPx2xKbr1X65ya4hOn-8eTLSt8e8EpwvKl7861_03kZe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bestehorn, Michael</creator><creatorcontrib>Bestehorn, Michael</creatorcontrib><description>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27100970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27100970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,58000,58233</link.rule.ids></links><search><creatorcontrib>Bestehorn, Michael</creatorcontrib><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFijsKAjEURYMo-F2C8DYwkMzoDNaiCHZiYSfRvHGe5CNJFMbKPbhDV2IKe6t7OOd22EDMKpHlizLvJi7KWTbnxaHPhiFcOReinOcDVu9kq5Euzef13id0HqRVsEX9IJvcBrVpnI5PIBuiPJGm2EKId0WokoPYINReGgRXgwRFBm0gZzOP6n5OH-MU6jHr1VIHnPx2xKbr1X65ya4hOn-8eTLSt8e8EpwvKl7861_03kZe</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Bestehorn, Michael</creator><general>Royal Society</general><scope/></search><sort><creationdate>20200626</creationdate><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><author>Bestehorn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_271009703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestehorn, Michael</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestehorn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>378</volume><issue>2174</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</abstract><pub>Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_27100970
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh%E2%80%93Taylor%20and%20Kelvin%E2%80%93Helmholtz%20instability%20studied%20in%20the%20frame%20of%20a%20dimension-reduced%20model&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bestehorn,%20Michael&rft.date=2020-06-26&rft.volume=378&rft.issue=2174&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E27100970%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27100970&rfr_iscdi=true