Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model
Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave a...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2174 |
container_start_page | 1 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 378 |
creator | Bestehorn, Michael |
description | Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities.
This article is part of the theme issue ‘Stokes at 200 (Part 1)’. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27100970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27100970</jstor_id><sourcerecordid>27100970</sourcerecordid><originalsourceid>FETCH-jstor_primary_271009703</originalsourceid><addsrcrecordid>eNqFijsKAjEURYMo-F2C8DYwkMzoDNaiCHZiYSfRvHGe5CNJFMbKPbhDV2IKe6t7OOd22EDMKpHlizLvJi7KWTbnxaHPhiFcOReinOcDVu9kq5Euzef13id0HqRVsEX9IJvcBrVpnI5PIBuiPJGm2EKId0WokoPYINReGgRXgwRFBm0gZzOP6n5OH-MU6jHr1VIHnPx2xKbr1X65ya4hOn-8eTLSt8e8EpwvKl7861_03kZe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bestehorn, Michael</creator><creatorcontrib>Bestehorn, Michael</creatorcontrib><description>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities.
This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27100970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27100970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,58000,58233</link.rule.ids></links><search><creatorcontrib>Bestehorn, Michael</creatorcontrib><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities.
This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFijsKAjEURYMo-F2C8DYwkMzoDNaiCHZiYSfRvHGe5CNJFMbKPbhDV2IKe6t7OOd22EDMKpHlizLvJi7KWTbnxaHPhiFcOReinOcDVu9kq5Euzef13id0HqRVsEX9IJvcBrVpnI5PIBuiPJGm2EKId0WokoPYINReGgRXgwRFBm0gZzOP6n5OH-MU6jHr1VIHnPx2xKbr1X65ya4hOn-8eTLSt8e8EpwvKl7861_03kZe</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Bestehorn, Michael</creator><general>Royal Society</general><scope/></search><sort><creationdate>20200626</creationdate><title>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</title><author>Bestehorn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_271009703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestehorn, Michael</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestehorn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>378</volume><issue>2174</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Introducing an extension of a recently derived dimension-reduced model for an infinitely deep inviscid and irrotational layer, a two-layer system is examined in the present paper. A second thin viscous layer is added on top of the original onelayer system. The set-up is a combination of a longwave approximation (upper layer) and a deep-water approximation (lower layer). Linear stability analysis shows the emergency of Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Finally, numerical solutions of the model reveal spatial and temporal pattern formation in the weakly nonlinear regime of both instabilities.
This article is part of the theme issue ‘Stokes at 200 (Part 1)’.</abstract><pub>Royal Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-06, Vol.378 (2174), p.1-10 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_27100970 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh%E2%80%93Taylor%20and%20Kelvin%E2%80%93Helmholtz%20instability%20studied%20in%20the%20frame%20of%20a%20dimension-reduced%20model&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bestehorn,%20Michael&rft.date=2020-06-26&rft.volume=378&rft.issue=2174&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E27100970%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27100970&rfr_iscdi=true |