Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle
Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in sampling make the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate of changes in ocean salinity since 1960 from the surface to 2000 m. We...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2020-12, Vol.33 (23), p.10357-10381 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10381 |
---|---|
container_issue | 23 |
container_start_page | 10357 |
container_title | Journal of climate |
container_volume | 33 |
creator | Cheng, Lijing Trenberth, Kevin E. Gruber, Nicolas Abraham, John P. Fasullo, John T. Li, Guancheng Mann, Michael E. Zhao, Xuanming Zhu, Jiang |
description | Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in sampling make the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate of changes in ocean salinity since 1960 from the surface to 2000 m. We overcome some of the inconsistencies present in existing salinity reconstructions by using an interpolation technique that uses information on the spatiotemporal covariability of salinity taken from model simulations. The interpolation technique is comprehensively evaluated using recent Argo-dominated observations through subsample tests. The new product strengthens previous findings that ocean surface and subsurface salinity contrasts have increased (i.e., the existing salinity pattern has amplified). We quantify this contrast by assessing the difference between the salinity in regions of high and low salinity averaged over the top 2000 m, a metric we refer to as SC2000. The increase in SC2000 is highly distinguishable from the sampling error and less affected by interannual variability and sampling error than if this metric was computed just for the surface. SC2000 increased by 1.9% ± 0.6% from 1960 to 1990 and by 3.3% ± 0.4% from 1991 to 2017 (5.2% ± 0.4% for 1960–2017), indicating an acceleration of the pattern amplification in recent decades. Combining this estimate with model simulations, we show that the change in SC2000 since 1960 emerges clearly as an anthropogenic signal from the natural variability. Based on the salinity-contrast metrics and model simulations, we find a water cycle amplification of 2.6% ± 4.4% K−1 since 1960, with the larger error than salinity metric mainly being due to model uncertainty. |
doi_str_mv | 10.1175/JCLI-D-20-0366.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_webof</sourceid><recordid>TN_cdi_jstor_primary_27076096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27076096</jstor_id><sourcerecordid>27076096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-fa960dedc00c9fb074c8e07ca1b6fe798f979719d0a480fc5aeeb3c11245faad3</originalsourceid><addsrcrecordid>eNqNkM1vEzEQxS0EEqFw54JkiSPaMrO7ttdHtC00KFKRoGfL8Y7bjbZ2sJ2i_Pc4CuqZ07yR3m8-HmPvES4Rlfj8fdysm6umhQY6KS_xBVuhOHV9375kKxh03wxKiNfsTc47AGwlwIr9WD_uU3yiiV_nMj_aQplHz8cHG-6rnAO_2-8p8VtHNvCfdpnDXI7chomXB-I3xynFJd7Pzi58PLqF3rJX3i6Z3v2rF-zu6_Wv8abZ3H5bj182jes6URpvtYSJJgfgtN-C6t1AoJzFrfSk9OC10gr1BLYfwDthibadQ2x74a2dugv28Ty3nv_7QLmYXTykUFeaViB2UqPU1QVnl0sx50Te7FP9Mh0NgjnlZk65mSvTgjnlZrAin87IH9pGn91MwdEzBgASBSrsqmqhuof_d49zsWWOYYyHUCr64YzuconpmWkVKAladn8BuzKLFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511369169</pqid></control><display><type>article</type><title>Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Cheng, Lijing ; Trenberth, Kevin E. ; Gruber, Nicolas ; Abraham, John P. ; Fasullo, John T. ; Li, Guancheng ; Mann, Michael E. ; Zhao, Xuanming ; Zhu, Jiang</creator><creatorcontrib>Cheng, Lijing ; Trenberth, Kevin E. ; Gruber, Nicolas ; Abraham, John P. ; Fasullo, John T. ; Li, Guancheng ; Mann, Michael E. ; Zhao, Xuanming ; Zhu, Jiang</creatorcontrib><description>Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in sampling make the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate of changes in ocean salinity since 1960 from the surface to 2000 m. We overcome some of the inconsistencies present in existing salinity reconstructions by using an interpolation technique that uses information on the spatiotemporal covariability of salinity taken from model simulations. The interpolation technique is comprehensively evaluated using recent Argo-dominated observations through subsample tests. The new product strengthens previous findings that ocean surface and subsurface salinity contrasts have increased (i.e., the existing salinity pattern has amplified). We quantify this contrast by assessing the difference between the salinity in regions of high and low salinity averaged over the top 2000 m, a metric we refer to as SC2000. The increase in SC2000 is highly distinguishable from the sampling error and less affected by interannual variability and sampling error than if this metric was computed just for the surface. SC2000 increased by 1.9% ± 0.6% from 1960 to 1990 and by 3.3% ± 0.4% from 1991 to 2017 (5.2% ± 0.4% for 1960–2017), indicating an acceleration of the pattern amplification in recent decades. Combining this estimate with model simulations, we show that the change in SC2000 since 1960 emerges clearly as an anthropogenic signal from the natural variability. Based on the salinity-contrast metrics and model simulations, we find a water cycle amplification of 2.6% ± 4.4% K−1 since 1960, with the larger error than salinity metric mainly being due to model uncertainty.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-20-0366.1</identifier><language>eng</language><publisher>BOSTON: American Meteorological Society</publisher><subject>Aerosols ; Amplification ; Anthropogenic factors ; Climate ; Errors ; Hydrologic cycle ; Hydrological cycle ; Hydrology ; Interannual variability ; Interpolation ; Meteorology & Atmospheric Sciences ; Methods ; Natural variability ; New products ; Ocean surface ; Oceans ; Physical Sciences ; Precipitation ; Salinity ; Salinity effects ; Sampling ; Sampling error ; Science & Technology ; Simulation ; Subsurface salinity ; Time series ; Trends ; Upper ocean ; Variability</subject><ispartof>Journal of climate, 2020-12, Vol.33 (23), p.10357-10381</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>127</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615171300020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c335t-fa960dedc00c9fb074c8e07ca1b6fe798f979719d0a480fc5aeeb3c11245faad3</citedby><cites>FETCH-LOGICAL-c335t-fa960dedc00c9fb074c8e07ca1b6fe798f979719d0a480fc5aeeb3c11245faad3</cites><orcidid>0000-0002-2085-2310 ; 0000-0002-1445-1000 ; 0000-0003-3067-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27076096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27076096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,3682,27929,27930,28253,58022,58255</link.rule.ids></links><search><creatorcontrib>Cheng, Lijing</creatorcontrib><creatorcontrib>Trenberth, Kevin E.</creatorcontrib><creatorcontrib>Gruber, Nicolas</creatorcontrib><creatorcontrib>Abraham, John P.</creatorcontrib><creatorcontrib>Fasullo, John T.</creatorcontrib><creatorcontrib>Li, Guancheng</creatorcontrib><creatorcontrib>Mann, Michael E.</creatorcontrib><creatorcontrib>Zhao, Xuanming</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><title>Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle</title><title>Journal of climate</title><addtitle>J CLIMATE</addtitle><description>Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in sampling make the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate of changes in ocean salinity since 1960 from the surface to 2000 m. We overcome some of the inconsistencies present in existing salinity reconstructions by using an interpolation technique that uses information on the spatiotemporal covariability of salinity taken from model simulations. The interpolation technique is comprehensively evaluated using recent Argo-dominated observations through subsample tests. The new product strengthens previous findings that ocean surface and subsurface salinity contrasts have increased (i.e., the existing salinity pattern has amplified). We quantify this contrast by assessing the difference between the salinity in regions of high and low salinity averaged over the top 2000 m, a metric we refer to as SC2000. The increase in SC2000 is highly distinguishable from the sampling error and less affected by interannual variability and sampling error than if this metric was computed just for the surface. SC2000 increased by 1.9% ± 0.6% from 1960 to 1990 and by 3.3% ± 0.4% from 1991 to 2017 (5.2% ± 0.4% for 1960–2017), indicating an acceleration of the pattern amplification in recent decades. Combining this estimate with model simulations, we show that the change in SC2000 since 1960 emerges clearly as an anthropogenic signal from the natural variability. Based on the salinity-contrast metrics and model simulations, we find a water cycle amplification of 2.6% ± 4.4% K−1 since 1960, with the larger error than salinity metric mainly being due to model uncertainty.</description><subject>Aerosols</subject><subject>Amplification</subject><subject>Anthropogenic factors</subject><subject>Climate</subject><subject>Errors</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Interannual variability</subject><subject>Interpolation</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Methods</subject><subject>Natural variability</subject><subject>New products</subject><subject>Ocean surface</subject><subject>Oceans</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Subsurface salinity</subject><subject>Time series</subject><subject>Trends</subject><subject>Upper ocean</subject><subject>Variability</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkM1vEzEQxS0EEqFw54JkiSPaMrO7ttdHtC00KFKRoGfL8Y7bjbZ2sJ2i_Pc4CuqZ07yR3m8-HmPvES4Rlfj8fdysm6umhQY6KS_xBVuhOHV9375kKxh03wxKiNfsTc47AGwlwIr9WD_uU3yiiV_nMj_aQplHz8cHG-6rnAO_2-8p8VtHNvCfdpnDXI7chomXB-I3xynFJd7Pzi58PLqF3rJX3i6Z3v2rF-zu6_Wv8abZ3H5bj182jes6URpvtYSJJgfgtN-C6t1AoJzFrfSk9OC10gr1BLYfwDthibadQ2x74a2dugv28Ty3nv_7QLmYXTykUFeaViB2UqPU1QVnl0sx50Te7FP9Mh0NgjnlZk65mSvTgjnlZrAin87IH9pGn91MwdEzBgASBSrsqmqhuof_d49zsWWOYYyHUCr64YzuconpmWkVKAladn8BuzKLFg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cheng, Lijing</creator><creator>Trenberth, Kevin E.</creator><creator>Gruber, Nicolas</creator><creator>Abraham, John P.</creator><creator>Fasullo, John T.</creator><creator>Li, Guancheng</creator><creator>Mann, Michael E.</creator><creator>Zhao, Xuanming</creator><creator>Zhu, Jiang</creator><general>American Meteorological Society</general><general>Amer Meteorological Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-2085-2310</orcidid><orcidid>https://orcid.org/0000-0002-1445-1000</orcidid><orcidid>https://orcid.org/0000-0003-3067-296X</orcidid></search><sort><creationdate>20201201</creationdate><title>Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle</title><author>Cheng, Lijing ; Trenberth, Kevin E. ; Gruber, Nicolas ; Abraham, John P. ; Fasullo, John T. ; Li, Guancheng ; Mann, Michael E. ; Zhao, Xuanming ; Zhu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-fa960dedc00c9fb074c8e07ca1b6fe798f979719d0a480fc5aeeb3c11245faad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>Amplification</topic><topic>Anthropogenic factors</topic><topic>Climate</topic><topic>Errors</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Interannual variability</topic><topic>Interpolation</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Methods</topic><topic>Natural variability</topic><topic>New products</topic><topic>Ocean surface</topic><topic>Oceans</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Subsurface salinity</topic><topic>Time series</topic><topic>Trends</topic><topic>Upper ocean</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lijing</creatorcontrib><creatorcontrib>Trenberth, Kevin E.</creatorcontrib><creatorcontrib>Gruber, Nicolas</creatorcontrib><creatorcontrib>Abraham, John P.</creatorcontrib><creatorcontrib>Fasullo, John T.</creatorcontrib><creatorcontrib>Li, Guancheng</creatorcontrib><creatorcontrib>Mann, Michael E.</creatorcontrib><creatorcontrib>Zhao, Xuanming</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lijing</au><au>Trenberth, Kevin E.</au><au>Gruber, Nicolas</au><au>Abraham, John P.</au><au>Fasullo, John T.</au><au>Li, Guancheng</au><au>Mann, Michael E.</au><au>Zhao, Xuanming</au><au>Zhu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle</atitle><jtitle>Journal of climate</jtitle><stitle>J CLIMATE</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>23</issue><spage>10357</spage><epage>10381</epage><pages>10357-10381</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in sampling make the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate of changes in ocean salinity since 1960 from the surface to 2000 m. We overcome some of the inconsistencies present in existing salinity reconstructions by using an interpolation technique that uses information on the spatiotemporal covariability of salinity taken from model simulations. The interpolation technique is comprehensively evaluated using recent Argo-dominated observations through subsample tests. The new product strengthens previous findings that ocean surface and subsurface salinity contrasts have increased (i.e., the existing salinity pattern has amplified). We quantify this contrast by assessing the difference between the salinity in regions of high and low salinity averaged over the top 2000 m, a metric we refer to as SC2000. The increase in SC2000 is highly distinguishable from the sampling error and less affected by interannual variability and sampling error than if this metric was computed just for the surface. SC2000 increased by 1.9% ± 0.6% from 1960 to 1990 and by 3.3% ± 0.4% from 1991 to 2017 (5.2% ± 0.4% for 1960–2017), indicating an acceleration of the pattern amplification in recent decades. Combining this estimate with model simulations, we show that the change in SC2000 since 1960 emerges clearly as an anthropogenic signal from the natural variability. Based on the salinity-contrast metrics and model simulations, we find a water cycle amplification of 2.6% ± 4.4% K−1 since 1960, with the larger error than salinity metric mainly being due to model uncertainty.</abstract><cop>BOSTON</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-20-0366.1</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2085-2310</orcidid><orcidid>https://orcid.org/0000-0002-1445-1000</orcidid><orcidid>https://orcid.org/0000-0003-3067-296X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2020-12, Vol.33 (23), p.10357-10381 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_jstor_primary_27076096 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aerosols Amplification Anthropogenic factors Climate Errors Hydrologic cycle Hydrological cycle Hydrology Interannual variability Interpolation Meteorology & Atmospheric Sciences Methods Natural variability New products Ocean surface Oceans Physical Sciences Precipitation Salinity Salinity effects Sampling Sampling error Science & Technology Simulation Subsurface salinity Time series Trends Upper ocean Variability |
title | Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Estimates%20of%20Changes%20in%20Upper%20Ocean%20Salinity%20and%20the%20Hydrological%20Cycle&rft.jtitle=Journal%20of%20climate&rft.au=Cheng,%20Lijing&rft.date=2020-12-01&rft.volume=33&rft.issue=23&rft.spage=10357&rft.epage=10381&rft.pages=10357-10381&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-20-0366.1&rft_dat=%3Cjstor_webof%3E27076096%3C/jstor_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511369169&rft_id=info:pmid/&rft_jstor_id=27076096&rfr_iscdi=true |