BOUNDED LINEAR AND COMPACT OPERATORS BETWEEN THE HAHN SPACE AND SPACES OF STRONGLY SUMMABLE AND BOUNDED SEQUENCES

We establish the characterisations of the classes of bounded linear operators from the generalised Hahn sequence space hd, where d is an unbounded monotone increasing sequence of positive real numbers, into the spaces ω 0 p , wp and ω ∞ p of sequences that are strongly summable to zero, strongly sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques Classe des sciences mathématiques et naturelles. Sciences mathématiques, 2020-01 (45), p.25-41
Hauptverfasser: MALKOWSKY, EBERHARD, RAKOČEVIĆ, VLADIMIR, VELIČKOVIĆ, VESNA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish the characterisations of the classes of bounded linear operators from the generalised Hahn sequence space hd, where d is an unbounded monotone increasing sequence of positive real numbers, into the spaces ω 0 p , wp and ω ∞ p of sequences that are strongly summable to zero, strongly summable and strongly bounded by the Cesàro method of order one and index p for 1 ≤ p < ∞. Furthermore, we prove estimates for the Hausdorff measure of noncompactness of bounded linear operators from hd into wp, and identities for the Hausdorff measure of noncompactness of bounded linear operators from hd to ω 0 p . We use these results to characterise the classes of compact operators from hd to wp and ω 0 p . Finally, we provide an example for some applications of our results and visualisations in crystallography.
ISSN:0561-7332
2406-0909