Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis
Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-9, Article 2023247118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 29 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Jia, Qidong Mu, Xin Sun, Xiang Deng, Zixin Chen, Feng |
description | Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms. |
doi_str_mv | 10.1073/pnas.2023247118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_27052528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052528</jstor_id><sourcerecordid>27052528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTk_r2pVS4EaQmsmzktoI0jgqDLhQ10U6ddOdtiopk9RI_3tT9Ng-Vq4SuN853JMThJ4RfEWwZNeT1-mKYsool4SoB2hFcEvqhrf4IVphTGWtOOUX6DKlA8a4FQo_RheMUyGJYCv07fMxZRh1dqYanXd-VwVb2dnv9FCZvRshlkmGOIGHKh193usEqZrTgmpfgbXOOPC5miKYOaYQ6ymGO9cvwBF0ysVHp-TSE_TI6iHB0_tzjb7evPuy-VDffnr_cfP2tjYCt7m2XEtLld1KwQH6RsutYbJVTFiguGkUNiWu5UI3jeScEiMN4F5rRVTfGMLW6M3Jd5q3I_SmLBf10E3RjToeu6Bd9_fEu323C3edYuVNJS8Gr-4NYvg-Q8rd6JKBYdAewpw6KgQRsuEKF_TlP-ghzNGXeAsliGRKtoW6PlEmhpQi2PMyBHdLkd1SZPe7yKJ48WeGM_-ruQK8PgE_YBtsWiowcMZK1Y0SmClSbgVfI_X_9Mbl8h-C34TZ5yJ9fpIeUg7xrKESCyqoYj8BswfG2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555173879</pqid></control><display><type>article</type><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><source>PubMed Central Free</source><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</creator><creatorcontrib>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</creatorcontrib><description>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023247118</identifier><identifier>PMID: 34257153</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Biological Sciences ; Dikarya ; Diterpenes - chemistry ; Diterpenes - metabolism ; Divergence ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Fungi - classification ; Fungi - enzymology ; Fungi - genetics ; Gene duplication ; Genes ; Genome, Fungal - genetics ; Genomes ; Molecular Structure ; Multidisciplinary Sciences ; Mutant Chimeric Proteins - genetics ; Mutant Chimeric Proteins - metabolism ; Mutation ; Phylogeny ; Precursors ; Robots ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Science & Technology ; Science & Technology - Other Topics ; Sesterterpenes - chemistry ; Sesterterpenes - metabolism ; Terpene synthase ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9, Article 2023247118</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000685038100015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</citedby><cites>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</cites><orcidid>0000-0002-3267-4646 ; 0000-0001-8710-1047 ; 0000-0001-8087-0345 ; 0000-0002-5804-0262 ; 0000-0002-8628-490X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052528$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052528$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,39262,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34257153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Qidong</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Deng, Zixin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</description><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Biological Sciences</subject><subject>Dikarya</subject><subject>Diterpenes - chemistry</subject><subject>Diterpenes - metabolism</subject><subject>Divergence</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Fungi - classification</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Gene duplication</subject><subject>Genes</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Molecular Structure</subject><subject>Multidisciplinary Sciences</subject><subject>Mutant Chimeric Proteins - genetics</subject><subject>Mutant Chimeric Proteins - metabolism</subject><subject>Mutation</subject><subject>Phylogeny</subject><subject>Precursors</subject><subject>Robots</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Sesterterpenes - chemistry</subject><subject>Sesterterpenes - metabolism</subject><subject>Terpene synthase</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEUhYMoTk_r2pVS4EaQmsmzktoI0jgqDLhQ10U6ddOdtiopk9RI_3tT9Ng-Vq4SuN853JMThJ4RfEWwZNeT1-mKYsool4SoB2hFcEvqhrf4IVphTGWtOOUX6DKlA8a4FQo_RheMUyGJYCv07fMxZRh1dqYanXd-VwVb2dnv9FCZvRshlkmGOIGHKh193usEqZrTgmpfgbXOOPC5miKYOaYQ6ymGO9cvwBF0ysVHp-TSE_TI6iHB0_tzjb7evPuy-VDffnr_cfP2tjYCt7m2XEtLld1KwQH6RsutYbJVTFiguGkUNiWu5UI3jeScEiMN4F5rRVTfGMLW6M3Jd5q3I_SmLBf10E3RjToeu6Bd9_fEu323C3edYuVNJS8Gr-4NYvg-Q8rd6JKBYdAewpw6KgQRsuEKF_TlP-ghzNGXeAsliGRKtoW6PlEmhpQi2PMyBHdLkd1SZPe7yKJ48WeGM_-ruQK8PgE_YBtsWiowcMZK1Y0SmClSbgVfI_X_9Mbl8h-C34TZ5yJ9fpIeUg7xrKESCyqoYj8BswfG2g</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Jia, Qidong</creator><creator>Mu, Xin</creator><creator>Sun, Xiang</creator><creator>Deng, Zixin</creator><creator>Chen, Feng</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3267-4646</orcidid><orcidid>https://orcid.org/0000-0001-8710-1047</orcidid><orcidid>https://orcid.org/0000-0001-8087-0345</orcidid><orcidid>https://orcid.org/0000-0002-5804-0262</orcidid><orcidid>https://orcid.org/0000-0002-8628-490X</orcidid></search><sort><creationdate>20210720</creationdate><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><author>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Biological Sciences</topic><topic>Dikarya</topic><topic>Diterpenes - chemistry</topic><topic>Diterpenes - metabolism</topic><topic>Divergence</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Fungi - classification</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Gene duplication</topic><topic>Genes</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Molecular Structure</topic><topic>Multidisciplinary Sciences</topic><topic>Mutant Chimeric Proteins - genetics</topic><topic>Mutant Chimeric Proteins - metabolism</topic><topic>Mutation</topic><topic>Phylogeny</topic><topic>Precursors</topic><topic>Robots</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Sesterterpenes - chemistry</topic><topic>Sesterterpenes - metabolism</topic><topic>Terpene synthase</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Qidong</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Deng, Zixin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Qidong</au><au>Mu, Xin</au><au>Sun, Xiang</au><au>Deng, Zixin</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>2023247118</artnum><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>34257153</pmid><doi>10.1073/pnas.2023247118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3267-4646</orcidid><orcidid>https://orcid.org/0000-0001-8710-1047</orcidid><orcidid>https://orcid.org/0000-0001-8087-0345</orcidid><orcidid>https://orcid.org/0000-0002-5804-0262</orcidid><orcidid>https://orcid.org/0000-0002-8628-490X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9, Article 2023247118 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_27052528 |
source | PubMed Central Free; MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alkyl and Aryl Transferases - genetics Alkyl and Aryl Transferases - metabolism Biological Sciences Dikarya Diterpenes - chemistry Diterpenes - metabolism Divergence Evolution Evolution, Molecular Evolutionary genetics Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Fungi - classification Fungi - enzymology Fungi - genetics Gene duplication Genes Genome, Fungal - genetics Genomes Molecular Structure Multidisciplinary Sciences Mutant Chimeric Proteins - genetics Mutant Chimeric Proteins - metabolism Mutation Phylogeny Precursors Robots Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Science & Technology Science & Technology - Other Topics Sesterterpenes - chemistry Sesterterpenes - metabolism Terpene synthase Yeast Yeasts |
title | Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20mining%20of%20fungal%20chimeric%20terpene%20synthases%20using%20an%20efficient%20precursor-providing%20yeast%20chassis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jia,%20Qidong&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=2023247118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023247118&rft_dat=%3Cjstor_pubme%3E27052528%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555173879&rft_id=info:pmid/34257153&rft_jstor_id=27052528&rfr_iscdi=true |