Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis

Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-9, Article 2023247118
Hauptverfasser: Jia, Qidong, Mu, Xin, Sun, Xiang, Deng, Zixin, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 29
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Jia, Qidong
Mu, Xin
Sun, Xiang
Deng, Zixin
Chen, Feng
description Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.
doi_str_mv 10.1073/pnas.2023247118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_27052528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052528</jstor_id><sourcerecordid>27052528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTk_r2pVS4EaQmsmzktoI0jgqDLhQ10U6ddOdtiopk9RI_3tT9Ng-Vq4SuN853JMThJ4RfEWwZNeT1-mKYsool4SoB2hFcEvqhrf4IVphTGWtOOUX6DKlA8a4FQo_RheMUyGJYCv07fMxZRh1dqYanXd-VwVb2dnv9FCZvRshlkmGOIGHKh193usEqZrTgmpfgbXOOPC5miKYOaYQ6ymGO9cvwBF0ysVHp-TSE_TI6iHB0_tzjb7evPuy-VDffnr_cfP2tjYCt7m2XEtLld1KwQH6RsutYbJVTFiguGkUNiWu5UI3jeScEiMN4F5rRVTfGMLW6M3Jd5q3I_SmLBf10E3RjToeu6Bd9_fEu323C3edYuVNJS8Gr-4NYvg-Q8rd6JKBYdAewpw6KgQRsuEKF_TlP-ghzNGXeAsliGRKtoW6PlEmhpQi2PMyBHdLkd1SZPe7yKJ48WeGM_-ruQK8PgE_YBtsWiowcMZK1Y0SmClSbgVfI_X_9Mbl8h-C34TZ5yJ9fpIeUg7xrKESCyqoYj8BswfG2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555173879</pqid></control><display><type>article</type><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><source>PubMed Central Free</source><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</creator><creatorcontrib>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</creatorcontrib><description>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023247118</identifier><identifier>PMID: 34257153</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Biological Sciences ; Dikarya ; Diterpenes - chemistry ; Diterpenes - metabolism ; Divergence ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Fungi - classification ; Fungi - enzymology ; Fungi - genetics ; Gene duplication ; Genes ; Genome, Fungal - genetics ; Genomes ; Molecular Structure ; Multidisciplinary Sciences ; Mutant Chimeric Proteins - genetics ; Mutant Chimeric Proteins - metabolism ; Mutation ; Phylogeny ; Precursors ; Robots ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sesterterpenes - chemistry ; Sesterterpenes - metabolism ; Terpene synthase ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9, Article 2023247118</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000685038100015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</citedby><cites>FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</cites><orcidid>0000-0002-3267-4646 ; 0000-0001-8710-1047 ; 0000-0001-8087-0345 ; 0000-0002-5804-0262 ; 0000-0002-8628-490X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052528$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052528$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,39262,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34257153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Qidong</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Deng, Zixin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</description><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Biological Sciences</subject><subject>Dikarya</subject><subject>Diterpenes - chemistry</subject><subject>Diterpenes - metabolism</subject><subject>Divergence</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Fungi - classification</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Gene duplication</subject><subject>Genes</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Molecular Structure</subject><subject>Multidisciplinary Sciences</subject><subject>Mutant Chimeric Proteins - genetics</subject><subject>Mutant Chimeric Proteins - metabolism</subject><subject>Mutation</subject><subject>Phylogeny</subject><subject>Precursors</subject><subject>Robots</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sesterterpenes - chemistry</subject><subject>Sesterterpenes - metabolism</subject><subject>Terpene synthase</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEUhYMoTk_r2pVS4EaQmsmzktoI0jgqDLhQ10U6ddOdtiopk9RI_3tT9Ng-Vq4SuN853JMThJ4RfEWwZNeT1-mKYsool4SoB2hFcEvqhrf4IVphTGWtOOUX6DKlA8a4FQo_RheMUyGJYCv07fMxZRh1dqYanXd-VwVb2dnv9FCZvRshlkmGOIGHKh193usEqZrTgmpfgbXOOPC5miKYOaYQ6ymGO9cvwBF0ysVHp-TSE_TI6iHB0_tzjb7evPuy-VDffnr_cfP2tjYCt7m2XEtLld1KwQH6RsutYbJVTFiguGkUNiWu5UI3jeScEiMN4F5rRVTfGMLW6M3Jd5q3I_SmLBf10E3RjToeu6Bd9_fEu323C3edYuVNJS8Gr-4NYvg-Q8rd6JKBYdAewpw6KgQRsuEKF_TlP-ghzNGXeAsliGRKtoW6PlEmhpQi2PMyBHdLkd1SZPe7yKJ48WeGM_-ruQK8PgE_YBtsWiowcMZK1Y0SmClSbgVfI_X_9Mbl8h-C34TZ5yJ9fpIeUg7xrKESCyqoYj8BswfG2g</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Jia, Qidong</creator><creator>Mu, Xin</creator><creator>Sun, Xiang</creator><creator>Deng, Zixin</creator><creator>Chen, Feng</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3267-4646</orcidid><orcidid>https://orcid.org/0000-0001-8710-1047</orcidid><orcidid>https://orcid.org/0000-0001-8087-0345</orcidid><orcidid>https://orcid.org/0000-0002-5804-0262</orcidid><orcidid>https://orcid.org/0000-0002-8628-490X</orcidid></search><sort><creationdate>20210720</creationdate><title>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</title><author>Jia, Qidong ; Mu, Xin ; Sun, Xiang ; Deng, Zixin ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f4a7f28fb754eed6a7bc379835fe206680c324f45a6674421c7ce0daa818d6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Biological Sciences</topic><topic>Dikarya</topic><topic>Diterpenes - chemistry</topic><topic>Diterpenes - metabolism</topic><topic>Divergence</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Fungi - classification</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Gene duplication</topic><topic>Genes</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Molecular Structure</topic><topic>Multidisciplinary Sciences</topic><topic>Mutant Chimeric Proteins - genetics</topic><topic>Mutant Chimeric Proteins - metabolism</topic><topic>Mutation</topic><topic>Phylogeny</topic><topic>Precursors</topic><topic>Robots</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sesterterpenes - chemistry</topic><topic>Sesterterpenes - metabolism</topic><topic>Terpene synthase</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Qidong</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Deng, Zixin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Qidong</au><au>Mu, Xin</au><au>Sun, Xiang</au><au>Deng, Zixin</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>2023247118</artnum><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>34257153</pmid><doi>10.1073/pnas.2023247118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3267-4646</orcidid><orcidid>https://orcid.org/0000-0001-8710-1047</orcidid><orcidid>https://orcid.org/0000-0001-8087-0345</orcidid><orcidid>https://orcid.org/0000-0002-5804-0262</orcidid><orcidid>https://orcid.org/0000-0002-8628-490X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9, Article 2023247118
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_27052528
source PubMed Central Free; MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alkyl and Aryl Transferases - genetics
Alkyl and Aryl Transferases - metabolism
Biological Sciences
Dikarya
Diterpenes - chemistry
Diterpenes - metabolism
Divergence
Evolution
Evolution, Molecular
Evolutionary genetics
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi
Fungi - classification
Fungi - enzymology
Fungi - genetics
Gene duplication
Genes
Genome, Fungal - genetics
Genomes
Molecular Structure
Multidisciplinary Sciences
Mutant Chimeric Proteins - genetics
Mutant Chimeric Proteins - metabolism
Mutation
Phylogeny
Precursors
Robots
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Science & Technology
Science & Technology - Other Topics
Sesterterpenes - chemistry
Sesterterpenes - metabolism
Terpene synthase
Yeast
Yeasts
title Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20mining%20of%20fungal%20chimeric%20terpene%20synthases%20using%20an%20efficient%20precursor-providing%20yeast%20chassis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jia,%20Qidong&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=2023247118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023247118&rft_dat=%3Cjstor_pubme%3E27052528%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555173879&rft_id=info:pmid/34257153&rft_jstor_id=27052528&rfr_iscdi=true