Performance of molecular crystals in conversion of light to mechanical work

Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (5), p.1-7
Hauptverfasser: Halabi, Jad Mahmoud, Ahmed, Ejaz, Sofela, Samuel, Naumov, Panče
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 5
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Halabi, Jad Mahmoud
Ahmed, Ejaz
Sofela, Samuel
Naumov, Panče
description Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.
doi_str_mv 10.1073/pnas.2020604118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_27006132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006132</jstor_id><sourcerecordid>27006132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</originalsourceid><addsrcrecordid>eNpVkb1PwzAQxS0EouVjZgJlZEl759iJsyChii9RCQaYLcd12pTELnZa1P-eVC0Fphvu99493SPkAmGAkCXDhVVhQIFCCgxRHJA-Qo5xynI4JH0AmsWCUdYjJyHMASDnAo5JL0lYzhPM-uT51fjS-UZZbSJXRo2rjV7Wykfar0Or6hBVNtLOrowPlbMbpq6mszZqXdQYPVO20qqOvpz_OCNHZScw57t5St7v795Gj_H45eFpdDuONRPYxinNUsNyZopJgsAKoWkBlIsUqdJUF4xzgSVXDE0hTKZEkXEGqBky1IVIk1Nys_VdLIvGTLSxrVe1XPiqUX4tnark_42tZnLqVjITKccUO4PrnYF3n0sTWtlUQZu6Vta4ZZC0y4mAyJMOHW5R7V0I3pT7MwhyU4HcVCB_K-gUV3_T7fmfn3fA5RaYh9b5_Z5mAF02mnwDVuOM4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481101153</pqid></control><display><type>article</type><title>Performance of molecular crystals in conversion of light to mechanical work</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</creator><creatorcontrib>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</creatorcontrib><description>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2020604118</identifier><identifier>PMID: 33495317</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</citedby><cites>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</cites><orcidid>0000-0003-2416-6569 ; 0000-0002-3676-2950 ; 0000-0002-0834-6263 ; 0000-0002-8709-8084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006132$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006132$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33495317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halabi, Jad Mahmoud</creatorcontrib><creatorcontrib>Ahmed, Ejaz</creatorcontrib><creatorcontrib>Sofela, Samuel</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><title>Performance of molecular crystals in conversion of light to mechanical work</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</description><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkb1PwzAQxS0EouVjZgJlZEl759iJsyChii9RCQaYLcd12pTELnZa1P-eVC0Fphvu99493SPkAmGAkCXDhVVhQIFCCgxRHJA-Qo5xynI4JH0AmsWCUdYjJyHMASDnAo5JL0lYzhPM-uT51fjS-UZZbSJXRo2rjV7Wykfar0Or6hBVNtLOrowPlbMbpq6mszZqXdQYPVO20qqOvpz_OCNHZScw57t5St7v795Gj_H45eFpdDuONRPYxinNUsNyZopJgsAKoWkBlIsUqdJUF4xzgSVXDE0hTKZEkXEGqBky1IVIk1Nys_VdLIvGTLSxrVe1XPiqUX4tnark_42tZnLqVjITKccUO4PrnYF3n0sTWtlUQZu6Vta4ZZC0y4mAyJMOHW5R7V0I3pT7MwhyU4HcVCB_K-gUV3_T7fmfn3fA5RaYh9b5_Z5mAF02mnwDVuOM4w</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Halabi, Jad Mahmoud</creator><creator>Ahmed, Ejaz</creator><creator>Sofela, Samuel</creator><creator>Naumov, Panče</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2416-6569</orcidid><orcidid>https://orcid.org/0000-0002-3676-2950</orcidid><orcidid>https://orcid.org/0000-0002-0834-6263</orcidid><orcidid>https://orcid.org/0000-0002-8709-8084</orcidid></search><sort><creationdate>20210202</creationdate><title>Performance of molecular crystals in conversion of light to mechanical work</title><author>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halabi, Jad Mahmoud</creatorcontrib><creatorcontrib>Ahmed, Ejaz</creatorcontrib><creatorcontrib>Sofela, Samuel</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halabi, Jad Mahmoud</au><au>Ahmed, Ejaz</au><au>Sofela, Samuel</au><au>Naumov, Panče</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of molecular crystals in conversion of light to mechanical work</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33495317</pmid><doi>10.1073/pnas.2020604118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2416-6569</orcidid><orcidid>https://orcid.org/0000-0002-3676-2950</orcidid><orcidid>https://orcid.org/0000-0002-0834-6263</orcidid><orcidid>https://orcid.org/0000-0002-8709-8084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_27006132
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Physical Sciences
title Performance of molecular crystals in conversion of light to mechanical work
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20molecular%20crystals%20in%20conversion%20of%20light%20to%20mechanical%20work&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Halabi,%20Jad%20Mahmoud&rft.date=2021-02-02&rft.volume=118&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2020604118&rft_dat=%3Cjstor_pubme%3E27006132%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481101153&rft_id=info:pmid/33495317&rft_jstor_id=27006132&rfr_iscdi=true