Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones

A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-08, Vol.33 (15), p.6361-6376
Hauptverfasser: Rivoire, Louis, Birner, Thomas, Knaff, John A., Tourville, Natalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6376
container_issue 15
container_start_page 6361
container_title Journal of climate
container_volume 33
creator Rivoire, Louis
Birner, Thomas
Knaff, John A.
Tourville, Natalie
description A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.
doi_str_mv 10.1175/JCLI-D-19-0813.1
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26937965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26937965</jstor_id><sourcerecordid>26937965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</originalsourceid><addsrcrecordid>eNqNkM-L1TAQx4Mo-Fy9exECHqVrJj-a9CjdVZ88EGU9eQhpfmge3aYmqfL-e1sqe_Y0A_P5zAxfhF4CuQaQ4u2n_nRsbhroGqKAXcMjdABBSUM4p4_RgaiON0oK8RQ9K-VMCNCWkAP6_mUxU43hEqcfuP70-Ktx0dT42-Pj_WxsxSngfkyLKzhN-C6nOc1mKR6fzMVn3Kc0bmrcZ9GaEfcXO6bJl-foSTBj8S_-1Sv07f3tXf-xOX3-cOzfnRrLmKgNHcL6nZPSDDQI5bkUTlnw0oETzNEAyrXMeSdV4FIOTMrgqLKMs0Ex79kVer3vnXP6tfhS9TkteVpPaioAVp4LvlJkp2xOpWQf9JzjvckXDURvEeotQn2jodNbhBpW5c2u_PFDCsVGP1n_oBFCWhCkk3ztyHZA_T_dx7qmnKY-LVNd1Ve7ei415QeHth2TXSvYX-nFjxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511377454</pqid></control><display><type>article</type><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR</source><creator>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</creator><creatorcontrib>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</creatorcontrib><description>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-19-0813.1</identifier><language>eng</language><publisher>BOSTON: American Meteorological Society</publisher><subject>Aerosols ; CALIPSO (Pathfinder satellite) ; Cirrus clouds ; Classification ; Clouds ; Cold ; Constellation Observing System for Meteorology, Ionosphere and Climate ; Convective clouds ; Cooling ; Cyclones ; Hurricanes ; Infrared analysis ; Ionosphere ; Lidar ; Meteorological satellites ; Meteorology ; Meteorology &amp; Atmospheric Sciences ; Physical Sciences ; Radar ; Radar data ; Radiative heating ; Satellite observation ; Science &amp; Technology ; Sea level ; Short wave radiation ; Stratosphere ; Temperature ; Tropical climate ; Tropical cyclones ; Tropical tropopause ; Tropopause</subject><ispartof>Journal of climate, 2020-08, Vol.33 (15), p.6361-6376</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Aug 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615097400004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</citedby><cites>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</cites><orcidid>0000-0002-3030-7922 ; 0000-0002-2966-3428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26937965$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26937965$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,3682,27928,27929,58021,58254</link.rule.ids></links><search><creatorcontrib>Rivoire, Louis</creatorcontrib><creatorcontrib>Birner, Thomas</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Tourville, Natalie</creatorcontrib><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><title>Journal of climate</title><addtitle>J CLIMATE</addtitle><description>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</description><subject>Aerosols</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>Cirrus clouds</subject><subject>Classification</subject><subject>Clouds</subject><subject>Cold</subject><subject>Constellation Observing System for Meteorology, Ionosphere and Climate</subject><subject>Convective clouds</subject><subject>Cooling</subject><subject>Cyclones</subject><subject>Hurricanes</subject><subject>Infrared analysis</subject><subject>Ionosphere</subject><subject>Lidar</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Meteorology &amp; Atmospheric Sciences</subject><subject>Physical Sciences</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radiative heating</subject><subject>Satellite observation</subject><subject>Science &amp; Technology</subject><subject>Sea level</subject><subject>Short wave radiation</subject><subject>Stratosphere</subject><subject>Temperature</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Tropical tropopause</subject><subject>Tropopause</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkM-L1TAQx4Mo-Fy9exECHqVrJj-a9CjdVZ88EGU9eQhpfmge3aYmqfL-e1sqe_Y0A_P5zAxfhF4CuQaQ4u2n_nRsbhroGqKAXcMjdABBSUM4p4_RgaiON0oK8RQ9K-VMCNCWkAP6_mUxU43hEqcfuP70-Ktx0dT42-Pj_WxsxSngfkyLKzhN-C6nOc1mKR6fzMVn3Kc0bmrcZ9GaEfcXO6bJl-foSTBj8S_-1Sv07f3tXf-xOX3-cOzfnRrLmKgNHcL6nZPSDDQI5bkUTlnw0oETzNEAyrXMeSdV4FIOTMrgqLKMs0Ex79kVer3vnXP6tfhS9TkteVpPaioAVp4LvlJkp2xOpWQf9JzjvckXDURvEeotQn2jodNbhBpW5c2u_PFDCsVGP1n_oBFCWhCkk3ztyHZA_T_dx7qmnKY-LVNd1Ve7ei415QeHth2TXSvYX-nFjxo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rivoire, Louis</creator><creator>Birner, Thomas</creator><creator>Knaff, John A.</creator><creator>Tourville, Natalie</creator><general>American Meteorological Society</general><general>Amer Meteorological Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3030-7922</orcidid><orcidid>https://orcid.org/0000-0002-2966-3428</orcidid></search><sort><creationdate>20200801</creationdate><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><author>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>Cirrus clouds</topic><topic>Classification</topic><topic>Clouds</topic><topic>Cold</topic><topic>Constellation Observing System for Meteorology, Ionosphere and Climate</topic><topic>Convective clouds</topic><topic>Cooling</topic><topic>Cyclones</topic><topic>Hurricanes</topic><topic>Infrared analysis</topic><topic>Ionosphere</topic><topic>Lidar</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Meteorology &amp; Atmospheric Sciences</topic><topic>Physical Sciences</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radiative heating</topic><topic>Satellite observation</topic><topic>Science &amp; Technology</topic><topic>Sea level</topic><topic>Short wave radiation</topic><topic>Stratosphere</topic><topic>Temperature</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Tropical tropopause</topic><topic>Tropopause</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivoire, Louis</creatorcontrib><creatorcontrib>Birner, Thomas</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Tourville, Natalie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivoire, Louis</au><au>Birner, Thomas</au><au>Knaff, John A.</au><au>Tourville, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</atitle><jtitle>Journal of climate</jtitle><stitle>J CLIMATE</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>33</volume><issue>15</issue><spage>6361</spage><epage>6376</epage><pages>6361-6376</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</abstract><cop>BOSTON</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-19-0813.1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3030-7922</orcidid><orcidid>https://orcid.org/0000-0002-2966-3428</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2020-08, Vol.33 (15), p.6361-6376
issn 0894-8755
1520-0442
language eng
recordid cdi_jstor_primary_26937965
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR
subjects Aerosols
CALIPSO (Pathfinder satellite)
Cirrus clouds
Classification
Clouds
Cold
Constellation Observing System for Meteorology, Ionosphere and Climate
Convective clouds
Cooling
Cyclones
Hurricanes
Infrared analysis
Ionosphere
Lidar
Meteorological satellites
Meteorology
Meteorology & Atmospheric Sciences
Physical Sciences
Radar
Radar data
Radiative heating
Satellite observation
Science & Technology
Sea level
Short wave radiation
Stratosphere
Temperature
Tropical climate
Tropical cyclones
Tropical tropopause
Tropopause
title Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Radiative%20Impact%20of%20Clouds%20on%20Tropopause%20Layer%20Cooling%20in%20Tropical%20Cyclones&rft.jtitle=Journal%20of%20climate&rft.au=Rivoire,%20Louis&rft.date=2020-08-01&rft.volume=33&rft.issue=15&rft.spage=6361&rft.epage=6376&rft.pages=6361-6376&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-19-0813.1&rft_dat=%3Cjstor_cross%3E26937965%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511377454&rft_id=info:pmid/&rft_jstor_id=26937965&rfr_iscdi=true