Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones
A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2020-08, Vol.33 (15), p.6361-6376 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6376 |
---|---|
container_issue | 15 |
container_start_page | 6361 |
container_title | Journal of climate |
container_volume | 33 |
creator | Rivoire, Louis Birner, Thomas Knaff, John A. Tourville, Natalie |
description | A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling. |
doi_str_mv | 10.1175/JCLI-D-19-0813.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26937965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26937965</jstor_id><sourcerecordid>26937965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</originalsourceid><addsrcrecordid>eNqNkM-L1TAQx4Mo-Fy9exECHqVrJj-a9CjdVZ88EGU9eQhpfmge3aYmqfL-e1sqe_Y0A_P5zAxfhF4CuQaQ4u2n_nRsbhroGqKAXcMjdABBSUM4p4_RgaiON0oK8RQ9K-VMCNCWkAP6_mUxU43hEqcfuP70-Ktx0dT42-Pj_WxsxSngfkyLKzhN-C6nOc1mKR6fzMVn3Kc0bmrcZ9GaEfcXO6bJl-foSTBj8S_-1Sv07f3tXf-xOX3-cOzfnRrLmKgNHcL6nZPSDDQI5bkUTlnw0oETzNEAyrXMeSdV4FIOTMrgqLKMs0Ex79kVer3vnXP6tfhS9TkteVpPaioAVp4LvlJkp2xOpWQf9JzjvckXDURvEeotQn2jodNbhBpW5c2u_PFDCsVGP1n_oBFCWhCkk3ztyHZA_T_dx7qmnKY-LVNd1Ve7ei415QeHth2TXSvYX-nFjxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511377454</pqid></control><display><type>article</type><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR</source><creator>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</creator><creatorcontrib>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</creatorcontrib><description>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-19-0813.1</identifier><language>eng</language><publisher>BOSTON: American Meteorological Society</publisher><subject>Aerosols ; CALIPSO (Pathfinder satellite) ; Cirrus clouds ; Classification ; Clouds ; Cold ; Constellation Observing System for Meteorology, Ionosphere and Climate ; Convective clouds ; Cooling ; Cyclones ; Hurricanes ; Infrared analysis ; Ionosphere ; Lidar ; Meteorological satellites ; Meteorology ; Meteorology & Atmospheric Sciences ; Physical Sciences ; Radar ; Radar data ; Radiative heating ; Satellite observation ; Science & Technology ; Sea level ; Short wave radiation ; Stratosphere ; Temperature ; Tropical climate ; Tropical cyclones ; Tropical tropopause ; Tropopause</subject><ispartof>Journal of climate, 2020-08, Vol.33 (15), p.6361-6376</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Aug 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615097400004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</citedby><cites>FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</cites><orcidid>0000-0002-3030-7922 ; 0000-0002-2966-3428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26937965$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26937965$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,3682,27928,27929,58021,58254</link.rule.ids></links><search><creatorcontrib>Rivoire, Louis</creatorcontrib><creatorcontrib>Birner, Thomas</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Tourville, Natalie</creatorcontrib><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><title>Journal of climate</title><addtitle>J CLIMATE</addtitle><description>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</description><subject>Aerosols</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>Cirrus clouds</subject><subject>Classification</subject><subject>Clouds</subject><subject>Cold</subject><subject>Constellation Observing System for Meteorology, Ionosphere and Climate</subject><subject>Convective clouds</subject><subject>Cooling</subject><subject>Cyclones</subject><subject>Hurricanes</subject><subject>Infrared analysis</subject><subject>Ionosphere</subject><subject>Lidar</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Physical Sciences</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radiative heating</subject><subject>Satellite observation</subject><subject>Science & Technology</subject><subject>Sea level</subject><subject>Short wave radiation</subject><subject>Stratosphere</subject><subject>Temperature</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Tropical tropopause</subject><subject>Tropopause</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkM-L1TAQx4Mo-Fy9exECHqVrJj-a9CjdVZ88EGU9eQhpfmge3aYmqfL-e1sqe_Y0A_P5zAxfhF4CuQaQ4u2n_nRsbhroGqKAXcMjdABBSUM4p4_RgaiON0oK8RQ9K-VMCNCWkAP6_mUxU43hEqcfuP70-Ktx0dT42-Pj_WxsxSngfkyLKzhN-C6nOc1mKR6fzMVn3Kc0bmrcZ9GaEfcXO6bJl-foSTBj8S_-1Sv07f3tXf-xOX3-cOzfnRrLmKgNHcL6nZPSDDQI5bkUTlnw0oETzNEAyrXMeSdV4FIOTMrgqLKMs0Ex79kVer3vnXP6tfhS9TkteVpPaioAVp4LvlJkp2xOpWQf9JzjvckXDURvEeotQn2jodNbhBpW5c2u_PFDCsVGP1n_oBFCWhCkk3ztyHZA_T_dx7qmnKY-LVNd1Ve7ei415QeHth2TXSvYX-nFjxo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rivoire, Louis</creator><creator>Birner, Thomas</creator><creator>Knaff, John A.</creator><creator>Tourville, Natalie</creator><general>American Meteorological Society</general><general>Amer Meteorological Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3030-7922</orcidid><orcidid>https://orcid.org/0000-0002-2966-3428</orcidid></search><sort><creationdate>20200801</creationdate><title>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</title><author>Rivoire, Louis ; Birner, Thomas ; Knaff, John A. ; Tourville, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2bf089d77ab2f58e475d8c1e7d1d53d2f18d63ded78f477b377fd28c343b83ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>Cirrus clouds</topic><topic>Classification</topic><topic>Clouds</topic><topic>Cold</topic><topic>Constellation Observing System for Meteorology, Ionosphere and Climate</topic><topic>Convective clouds</topic><topic>Cooling</topic><topic>Cyclones</topic><topic>Hurricanes</topic><topic>Infrared analysis</topic><topic>Ionosphere</topic><topic>Lidar</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Physical Sciences</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radiative heating</topic><topic>Satellite observation</topic><topic>Science & Technology</topic><topic>Sea level</topic><topic>Short wave radiation</topic><topic>Stratosphere</topic><topic>Temperature</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Tropical tropopause</topic><topic>Tropopause</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivoire, Louis</creatorcontrib><creatorcontrib>Birner, Thomas</creatorcontrib><creatorcontrib>Knaff, John A.</creatorcontrib><creatorcontrib>Tourville, Natalie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivoire, Louis</au><au>Birner, Thomas</au><au>Knaff, John A.</au><au>Tourville, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones</atitle><jtitle>Journal of climate</jtitle><stitle>J CLIMATE</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>33</volume><issue>15</issue><spage>6361</spage><epage>6376</epage><pages>6361-6376</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, cloud radiative effects are suggested to explain only modest amounts of TLC while other processes must provide the remaining cooling.</abstract><cop>BOSTON</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-19-0813.1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3030-7922</orcidid><orcidid>https://orcid.org/0000-0002-2966-3428</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2020-08, Vol.33 (15), p.6361-6376 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_jstor_primary_26937965 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR |
subjects | Aerosols CALIPSO (Pathfinder satellite) Cirrus clouds Classification Clouds Cold Constellation Observing System for Meteorology, Ionosphere and Climate Convective clouds Cooling Cyclones Hurricanes Infrared analysis Ionosphere Lidar Meteorological satellites Meteorology Meteorology & Atmospheric Sciences Physical Sciences Radar Radar data Radiative heating Satellite observation Science & Technology Sea level Short wave radiation Stratosphere Temperature Tropical climate Tropical cyclones Tropical tropopause Tropopause |
title | Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Radiative%20Impact%20of%20Clouds%20on%20Tropopause%20Layer%20Cooling%20in%20Tropical%20Cyclones&rft.jtitle=Journal%20of%20climate&rft.au=Rivoire,%20Louis&rft.date=2020-08-01&rft.volume=33&rft.issue=15&rft.spage=6361&rft.epage=6376&rft.pages=6361-6376&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-19-0813.1&rft_dat=%3Cjstor_cross%3E26937965%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511377454&rft_id=info:pmid/&rft_jstor_id=26937965&rfr_iscdi=true |