An explanation for the isotopic offset between soil and stem water in a temperate tree species

• A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-08, Vol.227 (3), p.766-779
Hauptverfasser: Barbeta, Adrià, Gimeno, Teresa E., Clavé, Laura, Fréjaville, Bastien, Jones, Sam P., Delvigne, Camille, Wingate, Lisa, Ogée, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 3
container_start_page 766
container_title The New phytologist
container_volume 227
creator Barbeta, Adrià
Gimeno, Teresa E.
Clavé, Laura
Fréjaville, Bastien
Jones, Sam P.
Delvigne, Camille
Wingate, Lisa
Ogée, Jérôme
description • A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. • We measured δ²H and δ18O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. • Regardless of substrate, soil and stem water δ²H were similar only near permanent wilting point. Under moister conditions, stem water δ²H was 11 ± 3‰ more negative than soil water δ²H, coherent with field studies. Under drier conditions, stem water δ²H became progressively more enriched than soil water δ²H. Although stem water δ18O broadly reflected that of soil water, soil–stem δ²H and δ18O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. • Soil–stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil–plant continuum.
doi_str_mv 10.1111/nph.16564
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26928374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928374</jstor_id><sourcerecordid>26928374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4444-c2dbd0d8c43cd42450260912edb09da29bd9ffd2c3b8bff47097c068811954813</originalsourceid><addsrcrecordid>eNqNkcGPEyEYxSdG43ZXD_4BGhJPG9NdYJgZODaNWpNGPWjiScLAR0ozhRHo1v3vZbbdejLxuxDI77083ldVrwi-IWVu_bi5IW3TsifVjLBWzDmpu6fVDGPK5y1rf1xUlyltMcaiaenz6qKmtBYNobPq58Ij-D0Oyqvsgkc2RJQ3gFwKOYxOo2Btgox6yAcAj1JwA1LeoJRhhw4qQ0TOI4XKdYRY7ihHAJRG0A7Si-qZVUOCl6fzqvr-4f235Wq-_vLx03KxnmtWZq6p6Q02XLNaG0ZZg2mLBaFgeiyMoqI3wlpDdd3z3lrWYdFp3HJOiGhY-e1VdX303ahBjtHtVLyXQTm5Wqzl9IZrwjuM2d3Evj2yYwy_9pCy3IZ99CWepIzwhnJMur-OOoaUItizLcFyal2W1uVD64V9c3Lc9zswZ_Kx5gK8OwIH6INNpRmv4YyVvTQ1btopIMZTQP7_9NLlh80tw97nIr09Sd0A9_-OLD9_XT1mf31UbFMO8aygraC87lj9B4PWtNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418528017</pqid></control><display><type>article</type><title>An explanation for the isotopic offset between soil and stem water in a temperate tree species</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Barbeta, Adrià ; Gimeno, Teresa E. ; Clavé, Laura ; Fréjaville, Bastien ; Jones, Sam P. ; Delvigne, Camille ; Wingate, Lisa ; Ogée, Jérôme</creator><creatorcontrib>Barbeta, Adrià ; Gimeno, Teresa E. ; Clavé, Laura ; Fréjaville, Bastien ; Jones, Sam P. ; Delvigne, Camille ; Wingate, Lisa ; Ogée, Jérôme</creatorcontrib><description>• A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. • We measured δ²H and δ18O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. • Regardless of substrate, soil and stem water δ²H were similar only near permanent wilting point. Under moister conditions, stem water δ²H was 11 ± 3‰ more negative than soil water δ²H, coherent with field studies. Under drier conditions, stem water δ²H became progressively more enriched than soil water δ²H. Although stem water δ18O broadly reflected that of soil water, soil–stem δ²H and δ18O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. • Soil–stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil–plant continuum.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16564</identifier><identifier>PMID: 32239512</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Carbon Isotopes - analysis ; ecohydrology ; Environmental Sciences ; Fagus ; Fagus sylvatica ; Fractionation ; Isotopes ; Life Sciences &amp; Biomedicine ; Moisture content ; Offsets ; Oxygen Isotopes - analysis ; Plant Sciences ; plant water sources ; root water uptake ; Science &amp; Technology ; Soil ; Soil water ; Soils ; Stems ; Substrates ; Transpiration ; Trees ; Uptake ; Water ; Water - analysis ; water isotopes ; Water uptake ; Wilting ; Wilting point</subject><ispartof>The New phytologist, 2020-08, Vol.227 (3), p.766-779</ispartof><rights>2020 The Authors © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>93</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530568700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4444-c2dbd0d8c43cd42450260912edb09da29bd9ffd2c3b8bff47097c068811954813</citedby><cites>FETCH-LOGICAL-c4444-c2dbd0d8c43cd42450260912edb09da29bd9ffd2c3b8bff47097c068811954813</cites><orcidid>0000-0002-3365-8584 ; 0000-0002-1707-9291 ; 0000-0002-6815-1601 ; 0000-0003-1921-1556 ; 0000-0003-0013-2022 ; 0000-0002-8357-1719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,782,786,805,887,1419,1435,27933,27934,28257,45583,45584,46418,46842,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32239512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03187004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbeta, Adrià</creatorcontrib><creatorcontrib>Gimeno, Teresa E.</creatorcontrib><creatorcontrib>Clavé, Laura</creatorcontrib><creatorcontrib>Fréjaville, Bastien</creatorcontrib><creatorcontrib>Jones, Sam P.</creatorcontrib><creatorcontrib>Delvigne, Camille</creatorcontrib><creatorcontrib>Wingate, Lisa</creatorcontrib><creatorcontrib>Ogée, Jérôme</creatorcontrib><title>An explanation for the isotopic offset between soil and stem water in a temperate tree species</title><title>The New phytologist</title><addtitle>NEW PHYTOL</addtitle><addtitle>New Phytol</addtitle><description>• A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. • We measured δ²H and δ18O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. • Regardless of substrate, soil and stem water δ²H were similar only near permanent wilting point. Under moister conditions, stem water δ²H was 11 ± 3‰ more negative than soil water δ²H, coherent with field studies. Under drier conditions, stem water δ²H became progressively more enriched than soil water δ²H. Although stem water δ18O broadly reflected that of soil water, soil–stem δ²H and δ18O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. • Soil–stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil–plant continuum.</description><subject>Carbon Isotopes - analysis</subject><subject>ecohydrology</subject><subject>Environmental Sciences</subject><subject>Fagus</subject><subject>Fagus sylvatica</subject><subject>Fractionation</subject><subject>Isotopes</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Moisture content</subject><subject>Offsets</subject><subject>Oxygen Isotopes - analysis</subject><subject>Plant Sciences</subject><subject>plant water sources</subject><subject>root water uptake</subject><subject>Science &amp; Technology</subject><subject>Soil</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stems</subject><subject>Substrates</subject><subject>Transpiration</subject><subject>Trees</subject><subject>Uptake</subject><subject>Water</subject><subject>Water - analysis</subject><subject>water isotopes</subject><subject>Water uptake</subject><subject>Wilting</subject><subject>Wilting point</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcGPEyEYxSdG43ZXD_4BGhJPG9NdYJgZODaNWpNGPWjiScLAR0ozhRHo1v3vZbbdejLxuxDI77083ldVrwi-IWVu_bi5IW3TsifVjLBWzDmpu6fVDGPK5y1rf1xUlyltMcaiaenz6qKmtBYNobPq58Ij-D0Oyqvsgkc2RJQ3gFwKOYxOo2Btgox6yAcAj1JwA1LeoJRhhw4qQ0TOI4XKdYRY7ihHAJRG0A7Si-qZVUOCl6fzqvr-4f235Wq-_vLx03KxnmtWZq6p6Q02XLNaG0ZZg2mLBaFgeiyMoqI3wlpDdd3z3lrWYdFp3HJOiGhY-e1VdX303ahBjtHtVLyXQTm5Wqzl9IZrwjuM2d3Evj2yYwy_9pCy3IZ99CWepIzwhnJMur-OOoaUItizLcFyal2W1uVD64V9c3Lc9zswZ_Kx5gK8OwIH6INNpRmv4YyVvTQ1btopIMZTQP7_9NLlh80tw97nIr09Sd0A9_-OLD9_XT1mf31UbFMO8aygraC87lj9B4PWtNU</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Barbeta, Adrià</creator><creator>Gimeno, Teresa E.</creator><creator>Clavé, Laura</creator><creator>Fréjaville, Bastien</creator><creator>Jones, Sam P.</creator><creator>Delvigne, Camille</creator><creator>Wingate, Lisa</creator><creator>Ogée, Jérôme</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3365-8584</orcidid><orcidid>https://orcid.org/0000-0002-1707-9291</orcidid><orcidid>https://orcid.org/0000-0002-6815-1601</orcidid><orcidid>https://orcid.org/0000-0003-1921-1556</orcidid><orcidid>https://orcid.org/0000-0003-0013-2022</orcidid><orcidid>https://orcid.org/0000-0002-8357-1719</orcidid></search><sort><creationdate>20200801</creationdate><title>An explanation for the isotopic offset between soil and stem water in a temperate tree species</title><author>Barbeta, Adrià ; Gimeno, Teresa E. ; Clavé, Laura ; Fréjaville, Bastien ; Jones, Sam P. ; Delvigne, Camille ; Wingate, Lisa ; Ogée, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4444-c2dbd0d8c43cd42450260912edb09da29bd9ffd2c3b8bff47097c068811954813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon Isotopes - analysis</topic><topic>ecohydrology</topic><topic>Environmental Sciences</topic><topic>Fagus</topic><topic>Fagus sylvatica</topic><topic>Fractionation</topic><topic>Isotopes</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Moisture content</topic><topic>Offsets</topic><topic>Oxygen Isotopes - analysis</topic><topic>Plant Sciences</topic><topic>plant water sources</topic><topic>root water uptake</topic><topic>Science &amp; Technology</topic><topic>Soil</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stems</topic><topic>Substrates</topic><topic>Transpiration</topic><topic>Trees</topic><topic>Uptake</topic><topic>Water</topic><topic>Water - analysis</topic><topic>water isotopes</topic><topic>Water uptake</topic><topic>Wilting</topic><topic>Wilting point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbeta, Adrià</creatorcontrib><creatorcontrib>Gimeno, Teresa E.</creatorcontrib><creatorcontrib>Clavé, Laura</creatorcontrib><creatorcontrib>Fréjaville, Bastien</creatorcontrib><creatorcontrib>Jones, Sam P.</creatorcontrib><creatorcontrib>Delvigne, Camille</creatorcontrib><creatorcontrib>Wingate, Lisa</creatorcontrib><creatorcontrib>Ogée, Jérôme</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbeta, Adrià</au><au>Gimeno, Teresa E.</au><au>Clavé, Laura</au><au>Fréjaville, Bastien</au><au>Jones, Sam P.</au><au>Delvigne, Camille</au><au>Wingate, Lisa</au><au>Ogée, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An explanation for the isotopic offset between soil and stem water in a temperate tree species</atitle><jtitle>The New phytologist</jtitle><stitle>NEW PHYTOL</stitle><addtitle>New Phytol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>227</volume><issue>3</issue><spage>766</spage><epage>779</epage><pages>766-779</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. • We measured δ²H and δ18O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. • Regardless of substrate, soil and stem water δ²H were similar only near permanent wilting point. Under moister conditions, stem water δ²H was 11 ± 3‰ more negative than soil water δ²H, coherent with field studies. Under drier conditions, stem water δ²H became progressively more enriched than soil water δ²H. Although stem water δ18O broadly reflected that of soil water, soil–stem δ²H and δ18O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. • Soil–stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil–plant continuum.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32239512</pmid><doi>10.1111/nph.16564</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3365-8584</orcidid><orcidid>https://orcid.org/0000-0002-1707-9291</orcidid><orcidid>https://orcid.org/0000-0002-6815-1601</orcidid><orcidid>https://orcid.org/0000-0003-1921-1556</orcidid><orcidid>https://orcid.org/0000-0003-0013-2022</orcidid><orcidid>https://orcid.org/0000-0002-8357-1719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-08, Vol.227 (3), p.766-779
issn 0028-646X
1469-8137
language eng
recordid cdi_jstor_primary_26928374
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; JSTOR
subjects Carbon Isotopes - analysis
ecohydrology
Environmental Sciences
Fagus
Fagus sylvatica
Fractionation
Isotopes
Life Sciences & Biomedicine
Moisture content
Offsets
Oxygen Isotopes - analysis
Plant Sciences
plant water sources
root water uptake
Science & Technology
Soil
Soil water
Soils
Stems
Substrates
Transpiration
Trees
Uptake
Water
Water - analysis
water isotopes
Water uptake
Wilting
Wilting point
title An explanation for the isotopic offset between soil and stem water in a temperate tree species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T04%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20explanation%20for%20the%20isotopic%20offset%20between%20soil%20and%20stem%20water%20in%20a%20temperate%20tree%20species&rft.jtitle=The%20New%20phytologist&rft.au=Barbeta,%20Adri%C3%A0&rft.date=2020-08-01&rft.volume=227&rft.issue=3&rft.spage=766&rft.epage=779&rft.pages=766-779&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16564&rft_dat=%3Cjstor_cross%3E26928374%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418528017&rft_id=info:pmid/32239512&rft_jstor_id=26928374&rfr_iscdi=true