Understanding intercalation compounds for sodium-ion batteries and beyond
Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel struct...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 2152 |
container_start_page | 1 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 377 |
creator | Kaufman, Jonas L. Vinckevičiūtė, Julija Kolli, Sanjeev Krishna Goiri, Jon Gabriel Van der Ven, Anton |
description | Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability.
This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26759165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26759165</jstor_id><sourcerecordid>26759165</sourcerecordid><originalsourceid>FETCH-jstor_primary_267591653</originalsourceid><addsrcrecordid>eNqFjcsKwjAURIMoWB-fIOQHAk3apnQtiu4V3JW0SSWlvSm56aJ_bwT3rmbgnGFWJOF5yZmopFjHnsmcFWn22pIdYp-mnMtCJOT-BG08BgXawptaCMa3alDBOqCtGyc3g0baOU_RaTuP7AsaFaJnDdK4o41ZHOgD2XRqQHP85Z6crpfH-cZ6DM7Xk7ej8kstZFlU8Tv7xz8qMzp4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics & Statistics</source><creator>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</creator><creatorcontrib>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</creatorcontrib><description>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability.
This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19</ispartof><rights>2019 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26759165$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26759165$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57996,58229</link.rule.ids></links><search><creatorcontrib>Kaufman, Jonas L.</creatorcontrib><creatorcontrib>Vinckevičiūtė, Julija</creatorcontrib><creatorcontrib>Kolli, Sanjeev Krishna</creatorcontrib><creatorcontrib>Goiri, Jon Gabriel</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability.
This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjcsKwjAURIMoWB-fIOQHAk3apnQtiu4V3JW0SSWlvSm56aJ_bwT3rmbgnGFWJOF5yZmopFjHnsmcFWn22pIdYp-mnMtCJOT-BG08BgXawptaCMa3alDBOqCtGyc3g0baOU_RaTuP7AsaFaJnDdK4o41ZHOgD2XRqQHP85Z6crpfH-cZ6DM7Xk7ej8kstZFlU8Tv7xz8qMzp4</recordid><startdate>20190826</startdate><enddate>20190826</enddate><creator>Kaufman, Jonas L.</creator><creator>Vinckevičiūtė, Julija</creator><creator>Kolli, Sanjeev Krishna</creator><creator>Goiri, Jon Gabriel</creator><creator>Van der Ven, Anton</creator><general>Royal Society</general><scope/></search><sort><creationdate>20190826</creationdate><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><author>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_267591653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufman, Jonas L.</creatorcontrib><creatorcontrib>Vinckevičiūtė, Julija</creatorcontrib><creatorcontrib>Kolli, Sanjeev Krishna</creatorcontrib><creatorcontrib>Goiri, Jon Gabriel</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufman, Jonas L.</au><au>Vinckevičiūtė, Julija</au><au>Kolli, Sanjeev Krishna</au><au>Goiri, Jon Gabriel</au><au>Van der Ven, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding intercalation compounds for sodium-ion batteries and beyond</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2019-08-26</date><risdate>2019</risdate><volume>377</volume><issue>2152</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability.
This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</abstract><pub>Royal Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_26759165 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics |
title | Understanding intercalation compounds for sodium-ion batteries and beyond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20intercalation%20compounds%20for%20sodium-ion%20batteries%20and%20beyond&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kaufman,%20Jonas%20L.&rft.date=2019-08-26&rft.volume=377&rft.issue=2152&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E26759165%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26759165&rfr_iscdi=true |