Understanding intercalation compounds for sodium-ion batteries and beyond

Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19
Hauptverfasser: Kaufman, Jonas L., Vinckevičiūtė, Julija, Kolli, Sanjeev Krishna, Goiri, Jon Gabriel, Van der Ven, Anton
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 2152
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 377
creator Kaufman, Jonas L.
Vinckevičiūtė, Julija
Kolli, Sanjeev Krishna
Goiri, Jon Gabriel
Van der Ven, Anton
description Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26759165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26759165</jstor_id><sourcerecordid>26759165</sourcerecordid><originalsourceid>FETCH-jstor_primary_267591653</originalsourceid><addsrcrecordid>eNqFjcsKwjAURIMoWB-fIOQHAk3apnQtiu4V3JW0SSWlvSm56aJ_bwT3rmbgnGFWJOF5yZmopFjHnsmcFWn22pIdYp-mnMtCJOT-BG08BgXawptaCMa3alDBOqCtGyc3g0baOU_RaTuP7AsaFaJnDdK4o41ZHOgD2XRqQHP85Z6crpfH-cZ6DM7Xk7ej8kstZFlU8Tv7xz8qMzp4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</creator><creatorcontrib>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</creatorcontrib><description>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19</ispartof><rights>2019 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26759165$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26759165$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57996,58229</link.rule.ids></links><search><creatorcontrib>Kaufman, Jonas L.</creatorcontrib><creatorcontrib>Vinckevičiūtė, Julija</creatorcontrib><creatorcontrib>Kolli, Sanjeev Krishna</creatorcontrib><creatorcontrib>Goiri, Jon Gabriel</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjcsKwjAURIMoWB-fIOQHAk3apnQtiu4V3JW0SSWlvSm56aJ_bwT3rmbgnGFWJOF5yZmopFjHnsmcFWn22pIdYp-mnMtCJOT-BG08BgXawptaCMa3alDBOqCtGyc3g0baOU_RaTuP7AsaFaJnDdK4o41ZHOgD2XRqQHP85Z6crpfH-cZ6DM7Xk7ej8kstZFlU8Tv7xz8qMzp4</recordid><startdate>20190826</startdate><enddate>20190826</enddate><creator>Kaufman, Jonas L.</creator><creator>Vinckevičiūtė, Julija</creator><creator>Kolli, Sanjeev Krishna</creator><creator>Goiri, Jon Gabriel</creator><creator>Van der Ven, Anton</creator><general>Royal Society</general><scope/></search><sort><creationdate>20190826</creationdate><title>Understanding intercalation compounds for sodium-ion batteries and beyond</title><author>Kaufman, Jonas L. ; Vinckevičiūtė, Julija ; Kolli, Sanjeev Krishna ; Goiri, Jon Gabriel ; Van der Ven, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_267591653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufman, Jonas L.</creatorcontrib><creatorcontrib>Vinckevičiūtė, Julija</creatorcontrib><creatorcontrib>Kolli, Sanjeev Krishna</creatorcontrib><creatorcontrib>Goiri, Jon Gabriel</creatorcontrib><creatorcontrib>Van der Ven, Anton</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufman, Jonas L.</au><au>Vinckevičiūtė, Julija</au><au>Kolli, Sanjeev Krishna</au><au>Goiri, Jon Gabriel</au><au>Van der Ven, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding intercalation compounds for sodium-ion batteries and beyond</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2019-08-26</date><risdate>2019</risdate><volume>377</volume><issue>2152</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other ‘beyond lithium-ion’ technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.</abstract><pub>Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2019-08, Vol.377 (2152), p.1-19
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_26759165
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics
title Understanding intercalation compounds for sodium-ion batteries and beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20intercalation%20compounds%20for%20sodium-ion%20batteries%20and%20beyond&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kaufman,%20Jonas%20L.&rft.date=2019-08-26&rft.volume=377&rft.issue=2152&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E26759165%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26759165&rfr_iscdi=true