Human-level performance in 3D multiplayer games with populationbased reinforcement learning

Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6443), p.859-865
Hauptverfasser: Jaderberg, Max, Czarnecki, Wojciech M., Dunning, Iain, Marris, Luke, Lever, Guy, Castañeda, Antonio Garcia, Beattie, Charles, Rabinowitz, Neil C., Morcos, Ari S., Ruderman, Avraham, Sonnerat, Nicolas, Green, Tim, Deason, Louise, Leibo, Joel Z., Silver, David, Hassabis, Demis, Kavukcuoglu, Koray, Graepel, Thore
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 6443
container_start_page 859
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Jaderberg, Max
Czarnecki, Wojciech M.
Dunning, Iain
Marris, Luke
Lever, Guy
Castañeda, Antonio Garcia
Beattie, Charles
Rabinowitz, Neil C.
Morcos, Ari S.
Ruderman, Avraham
Sonnerat, Nicolas
Green, Tim
Deason, Louise
Leibo, Joel Z.
Silver, David
Hassabis, Demis
Kavukcuoglu, Koray
Graepel, Thore
description Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26681482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26681482</jstor_id><sourcerecordid>26681482</sourcerecordid><originalsourceid>FETCH-jstor_primary_266814823</originalsourceid><addsrcrecordid>eNqFi0sKwjAUAIMoWD9HEN4FAmlja7v2Qw_gzoXE-lpT8iNJld7eLty7GoZhZiRJWZXTKmN8ThLGeEFLdsiXZBVCz9jUKp6QWz1oYajCNypw6FvrJ28QpAF-Aj2oKJ0SI3rohMYAHxlf4KwblIjSmocI-ASP0kxngxpNBIXCG2m6DVm0QgXc_rgmu8v5eqxpH6L1d-elFn68Z0VRpvsy4__6F64DQPY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><source>American Association for the Advancement of Science</source><creator>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</creator><creatorcontrib>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</creatorcontrib><description>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6443), p.859-865</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Jaderberg, Max</creatorcontrib><creatorcontrib>Czarnecki, Wojciech M.</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Marris, Luke</creatorcontrib><creatorcontrib>Lever, Guy</creatorcontrib><creatorcontrib>Castañeda, Antonio Garcia</creatorcontrib><creatorcontrib>Beattie, Charles</creatorcontrib><creatorcontrib>Rabinowitz, Neil C.</creatorcontrib><creatorcontrib>Morcos, Ari S.</creatorcontrib><creatorcontrib>Ruderman, Avraham</creatorcontrib><creatorcontrib>Sonnerat, Nicolas</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Deason, Louise</creatorcontrib><creatorcontrib>Leibo, Joel Z.</creatorcontrib><creatorcontrib>Silver, David</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Graepel, Thore</creatorcontrib><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><title>Science (American Association for the Advancement of Science)</title><description>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFi0sKwjAUAIMoWD9HEN4FAmlja7v2Qw_gzoXE-lpT8iNJld7eLty7GoZhZiRJWZXTKmN8ThLGeEFLdsiXZBVCz9jUKp6QWz1oYajCNypw6FvrJ28QpAF-Aj2oKJ0SI3rohMYAHxlf4KwblIjSmocI-ASP0kxngxpNBIXCG2m6DVm0QgXc_rgmu8v5eqxpH6L1d-elFn68Z0VRpvsy4__6F64DQPY</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Jaderberg, Max</creator><creator>Czarnecki, Wojciech M.</creator><creator>Dunning, Iain</creator><creator>Marris, Luke</creator><creator>Lever, Guy</creator><creator>Castañeda, Antonio Garcia</creator><creator>Beattie, Charles</creator><creator>Rabinowitz, Neil C.</creator><creator>Morcos, Ari S.</creator><creator>Ruderman, Avraham</creator><creator>Sonnerat, Nicolas</creator><creator>Green, Tim</creator><creator>Deason, Louise</creator><creator>Leibo, Joel Z.</creator><creator>Silver, David</creator><creator>Hassabis, Demis</creator><creator>Kavukcuoglu, Koray</creator><creator>Graepel, Thore</creator><general>American Association for the Advancement of Science</general><scope/></search><sort><creationdate>20190531</creationdate><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><author>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_266814823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaderberg, Max</creatorcontrib><creatorcontrib>Czarnecki, Wojciech M.</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Marris, Luke</creatorcontrib><creatorcontrib>Lever, Guy</creatorcontrib><creatorcontrib>Castañeda, Antonio Garcia</creatorcontrib><creatorcontrib>Beattie, Charles</creatorcontrib><creatorcontrib>Rabinowitz, Neil C.</creatorcontrib><creatorcontrib>Morcos, Ari S.</creatorcontrib><creatorcontrib>Ruderman, Avraham</creatorcontrib><creatorcontrib>Sonnerat, Nicolas</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Deason, Louise</creatorcontrib><creatorcontrib>Leibo, Joel Z.</creatorcontrib><creatorcontrib>Silver, David</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Graepel, Thore</creatorcontrib><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaderberg, Max</au><au>Czarnecki, Wojciech M.</au><au>Dunning, Iain</au><au>Marris, Luke</au><au>Lever, Guy</au><au>Castañeda, Antonio Garcia</au><au>Beattie, Charles</au><au>Rabinowitz, Neil C.</au><au>Morcos, Ari S.</au><au>Ruderman, Avraham</au><au>Sonnerat, Nicolas</au><au>Green, Tim</au><au>Deason, Louise</au><au>Leibo, Joel Z.</au><au>Silver, David</au><au>Hassabis, Demis</au><au>Kavukcuoglu, Koray</au><au>Graepel, Thore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2019-05-31</date><risdate>2019</risdate><volume>364</volume><issue>6443</issue><spage>859</spage><epage>865</epage><pages>859-865</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</abstract><pub>American Association for the Advancement of Science</pub></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6443), p.859-865
issn 0036-8075
1095-9203
language eng
recordid cdi_jstor_primary_26681482
source American Association for the Advancement of Science
title Human-level performance in 3D multiplayer games with populationbased reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-level%20performance%20in%203D%20multiplayer%20games%20with%20populationbased%20reinforcement%20learning&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jaderberg,%20Max&rft.date=2019-05-31&rft.volume=364&rft.issue=6443&rft.spage=859&rft.epage=865&rft.pages=859-865&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/&rft_dat=%3Cjstor%3E26681482%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26681482&rfr_iscdi=true