Human-level performance in 3D multiplayer games with populationbased reinforcement learning
Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evalu...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6443), p.859-865 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | 6443 |
container_start_page | 859 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Jaderberg, Max Czarnecki, Wojciech M. Dunning, Iain Marris, Luke Lever, Guy Castañeda, Antonio Garcia Beattie, Charles Rabinowitz, Neil C. Morcos, Ari S. Ruderman, Avraham Sonnerat, Nicolas Green, Tim Deason, Louise Leibo, Joel Z. Silver, David Hassabis, Demis Kavukcuoglu, Koray Graepel, Thore |
description | Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26681482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26681482</jstor_id><sourcerecordid>26681482</sourcerecordid><originalsourceid>FETCH-jstor_primary_266814823</originalsourceid><addsrcrecordid>eNqFi0sKwjAUAIMoWD9HEN4FAmlja7v2Qw_gzoXE-lpT8iNJld7eLty7GoZhZiRJWZXTKmN8ThLGeEFLdsiXZBVCz9jUKp6QWz1oYajCNypw6FvrJ28QpAF-Aj2oKJ0SI3rohMYAHxlf4KwblIjSmocI-ASP0kxngxpNBIXCG2m6DVm0QgXc_rgmu8v5eqxpH6L1d-elFn68Z0VRpvsy4__6F64DQPY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><source>American Association for the Advancement of Science</source><creator>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</creator><creatorcontrib>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</creatorcontrib><description>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6443), p.859-865</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Jaderberg, Max</creatorcontrib><creatorcontrib>Czarnecki, Wojciech M.</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Marris, Luke</creatorcontrib><creatorcontrib>Lever, Guy</creatorcontrib><creatorcontrib>Castañeda, Antonio Garcia</creatorcontrib><creatorcontrib>Beattie, Charles</creatorcontrib><creatorcontrib>Rabinowitz, Neil C.</creatorcontrib><creatorcontrib>Morcos, Ari S.</creatorcontrib><creatorcontrib>Ruderman, Avraham</creatorcontrib><creatorcontrib>Sonnerat, Nicolas</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Deason, Louise</creatorcontrib><creatorcontrib>Leibo, Joel Z.</creatorcontrib><creatorcontrib>Silver, David</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Graepel, Thore</creatorcontrib><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><title>Science (American Association for the Advancement of Science)</title><description>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFi0sKwjAUAIMoWD9HEN4FAmlja7v2Qw_gzoXE-lpT8iNJld7eLty7GoZhZiRJWZXTKmN8ThLGeEFLdsiXZBVCz9jUKp6QWz1oYajCNypw6FvrJ28QpAF-Aj2oKJ0SI3rohMYAHxlf4KwblIjSmocI-ASP0kxngxpNBIXCG2m6DVm0QgXc_rgmu8v5eqxpH6L1d-elFn68Z0VRpvsy4__6F64DQPY</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Jaderberg, Max</creator><creator>Czarnecki, Wojciech M.</creator><creator>Dunning, Iain</creator><creator>Marris, Luke</creator><creator>Lever, Guy</creator><creator>Castañeda, Antonio Garcia</creator><creator>Beattie, Charles</creator><creator>Rabinowitz, Neil C.</creator><creator>Morcos, Ari S.</creator><creator>Ruderman, Avraham</creator><creator>Sonnerat, Nicolas</creator><creator>Green, Tim</creator><creator>Deason, Louise</creator><creator>Leibo, Joel Z.</creator><creator>Silver, David</creator><creator>Hassabis, Demis</creator><creator>Kavukcuoglu, Koray</creator><creator>Graepel, Thore</creator><general>American Association for the Advancement of Science</general><scope/></search><sort><creationdate>20190531</creationdate><title>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</title><author>Jaderberg, Max ; Czarnecki, Wojciech M. ; Dunning, Iain ; Marris, Luke ; Lever, Guy ; Castañeda, Antonio Garcia ; Beattie, Charles ; Rabinowitz, Neil C. ; Morcos, Ari S. ; Ruderman, Avraham ; Sonnerat, Nicolas ; Green, Tim ; Deason, Louise ; Leibo, Joel Z. ; Silver, David ; Hassabis, Demis ; Kavukcuoglu, Koray ; Graepel, Thore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_266814823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaderberg, Max</creatorcontrib><creatorcontrib>Czarnecki, Wojciech M.</creatorcontrib><creatorcontrib>Dunning, Iain</creatorcontrib><creatorcontrib>Marris, Luke</creatorcontrib><creatorcontrib>Lever, Guy</creatorcontrib><creatorcontrib>Castañeda, Antonio Garcia</creatorcontrib><creatorcontrib>Beattie, Charles</creatorcontrib><creatorcontrib>Rabinowitz, Neil C.</creatorcontrib><creatorcontrib>Morcos, Ari S.</creatorcontrib><creatorcontrib>Ruderman, Avraham</creatorcontrib><creatorcontrib>Sonnerat, Nicolas</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Deason, Louise</creatorcontrib><creatorcontrib>Leibo, Joel Z.</creatorcontrib><creatorcontrib>Silver, David</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Kavukcuoglu, Koray</creatorcontrib><creatorcontrib>Graepel, Thore</creatorcontrib><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaderberg, Max</au><au>Czarnecki, Wojciech M.</au><au>Dunning, Iain</au><au>Marris, Luke</au><au>Lever, Guy</au><au>Castañeda, Antonio Garcia</au><au>Beattie, Charles</au><au>Rabinowitz, Neil C.</au><au>Morcos, Ari S.</au><au>Ruderman, Avraham</au><au>Sonnerat, Nicolas</au><au>Green, Tim</au><au>Deason, Louise</au><au>Leibo, Joel Z.</au><au>Silver, David</au><au>Hassabis, Demis</au><au>Kavukcuoglu, Koray</au><au>Graepel, Thore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-level performance in 3D multiplayer games with populationbased reinforcement learning</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2019-05-31</date><risdate>2019</risdate><volume>364</volume><issue>6443</issue><spage>859</spage><epage>865</epage><pages>859-865</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.</abstract><pub>American Association for the Advancement of Science</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6443), p.859-865 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_jstor_primary_26681482 |
source | American Association for the Advancement of Science |
title | Human-level performance in 3D multiplayer games with populationbased reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-level%20performance%20in%203D%20multiplayer%20games%20with%20populationbased%20reinforcement%20learning&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jaderberg,%20Max&rft.date=2019-05-31&rft.volume=364&rft.issue=6443&rft.spage=859&rft.epage=865&rft.pages=859-865&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/&rft_dat=%3Cjstor%3E26681482%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26681482&rfr_iscdi=true |