Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function
The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1985-12, Vol.82 (24), p.8384-8388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8388 |
---|---|
container_issue | 24 |
container_start_page | 8384 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 82 |
creator | Chance, B. Leigh, J. S. Clark, B. J. Maris, J. Kent, J. Nioka, S. Smith, D. |
description | The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults. |
doi_str_mv | 10.1073/pnas.82.24.8384 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_26593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26593</jstor_id><sourcerecordid>26593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</originalsourceid><addsrcrecordid>eNp9kcFv0zAYxSMEGmVwRkIC-YDglNax4yRG4lCVjSFt2qFDHC03-dx5c-3Odqblr-BfxlGrCC6cfHi_9z7rvSx7W-B5gWu62FsZ5g2Zk3Le0KZ8ls0KzIu8Kjl-ns0wJnXelKR8mb0K4Q5jzFmDT7IT2lQVIXyW_V45G70zyCl0_aQ7GfUjoCuIcuOMDjskbZeEYQsWfQOTRD8gbdFFv5MWre_BJNSgqz60Br6gJVpHkN2Qr6OMgJZWmiHoMKbHW0C_nL9fnFnw2wGtXIjoxksbFHh03ts2amdfZy-UNAHeHN_T7Of52c3qIr-8_v5jtbzMW8aqmFPOOsaJUpUiXVeXuFAcqlJ2rGW8VhhqVlDMyw7URtGCtpy0hOGO8LqmwCk9zb4ecvf9ZgddC6kFacTe6530g3BSi38Vq2_F1j0KyjEnOPk_Hf3ePfQQotjp0IIx0oLrg6grVhJCmwQuDmDrXQge1HSjwGKcUIwTioYIUopxwuR4__fXJv64WdI_HnUZWmlUqrDVYcKaqmAVqxP2-YiN-ZM63RGqNybCU0zkh_-SCXh3AO5CdH4iSMVSk38AK_HICw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76542238</pqid></control><display><type>article</type><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</creator><creatorcontrib>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</creatorcontrib><description>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.82.24.8384</identifier><identifier>PMID: 3866229</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine triphosphatases ; Adenosine Triphosphate - metabolism ; Biochemistry ; Biological and medical sciences ; Biomechanics. Biorheology ; Cellular metabolism ; Creatine ; Cytosol - metabolism ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Humans ; Hydrogen-Ion Concentration ; Hyperbolas ; Hypoxia - metabolism ; Kinetics ; Magnetic Resonance Spectroscopy ; Metabolism ; Mitochondria, Muscle - metabolism ; Muscles - metabolism ; Oxygen ; Oxygen - metabolism ; Phosphates ; Phosphates - metabolism ; Phosphocreatine - metabolism ; Physical Exertion ; Space life sciences ; Tissues, organs and organisms biophysics ; Transfer functions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1985-12, Vol.82 (24), p.8384-8388</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/82/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26593$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26593$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8615657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3866229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chance, B.</creatorcontrib><creatorcontrib>Leigh, J. S.</creatorcontrib><creatorcontrib>Clark, B. J.</creatorcontrib><creatorcontrib>Maris, J.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Nioka, S.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Cellular metabolism</subject><subject>Creatine</subject><subject>Cytosol - metabolism</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hyperbolas</subject><subject>Hypoxia - metabolism</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolism</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscles - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Phosphocreatine - metabolism</subject><subject>Physical Exertion</subject><subject>Space life sciences</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Transfer functions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFv0zAYxSMEGmVwRkIC-YDglNax4yRG4lCVjSFt2qFDHC03-dx5c-3Odqblr-BfxlGrCC6cfHi_9z7rvSx7W-B5gWu62FsZ5g2Zk3Le0KZ8ls0KzIu8Kjl-ns0wJnXelKR8mb0K4Q5jzFmDT7IT2lQVIXyW_V45G70zyCl0_aQ7GfUjoCuIcuOMDjskbZeEYQsWfQOTRD8gbdFFv5MWre_BJNSgqz60Br6gJVpHkN2Qr6OMgJZWmiHoMKbHW0C_nL9fnFnw2wGtXIjoxksbFHh03ts2amdfZy-UNAHeHN_T7Of52c3qIr-8_v5jtbzMW8aqmFPOOsaJUpUiXVeXuFAcqlJ2rGW8VhhqVlDMyw7URtGCtpy0hOGO8LqmwCk9zb4ecvf9ZgddC6kFacTe6530g3BSi38Vq2_F1j0KyjEnOPk_Hf3ePfQQotjp0IIx0oLrg6grVhJCmwQuDmDrXQge1HSjwGKcUIwTioYIUopxwuR4__fXJv64WdI_HnUZWmlUqrDVYcKaqmAVqxP2-YiN-ZM63RGqNybCU0zkh_-SCXh3AO5CdH4iSMVSk38AK_HICw</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>Chance, B.</creator><creator>Leigh, J. S.</creator><creator>Clark, B. J.</creator><creator>Maris, J.</creator><creator>Kent, J.</creator><creator>Nioka, S.</creator><creator>Smith, D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19851201</creationdate><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><author>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Cellular metabolism</topic><topic>Creatine</topic><topic>Cytosol - metabolism</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hyperbolas</topic><topic>Hypoxia - metabolism</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolism</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscles - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Phosphocreatine - metabolism</topic><topic>Physical Exertion</topic><topic>Space life sciences</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chance, B.</creatorcontrib><creatorcontrib>Leigh, J. S.</creatorcontrib><creatorcontrib>Clark, B. J.</creatorcontrib><creatorcontrib>Maris, J.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Nioka, S.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chance, B.</au><au>Leigh, J. S.</au><au>Clark, B. J.</au><au>Maris, J.</au><au>Kent, J.</au><au>Nioka, S.</au><au>Smith, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1985-12-01</date><risdate>1985</risdate><volume>82</volume><issue>24</issue><spage>8384</spage><epage>8388</epage><pages>8384-8388</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3866229</pmid><doi>10.1073/pnas.82.24.8384</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1985-12, Vol.82 (24), p.8384-8388 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_26593 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine Diphosphate - metabolism Adenosine triphosphatases Adenosine Triphosphate - metabolism Biochemistry Biological and medical sciences Biomechanics. Biorheology Cellular metabolism Creatine Cytosol - metabolism Energy Metabolism Fundamental and applied biological sciences. Psychology Humans Hydrogen-Ion Concentration Hyperbolas Hypoxia - metabolism Kinetics Magnetic Resonance Spectroscopy Metabolism Mitochondria, Muscle - metabolism Muscles - metabolism Oxygen Oxygen - metabolism Phosphates Phosphates - metabolism Phosphocreatine - metabolism Physical Exertion Space life sciences Tissues, organs and organisms biophysics Transfer functions |
title | Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Oxidative%20Metabolism%20and%20Oxygen%20Delivery%20in%20Human%20Skeletal%20Muscle:%20A%20Steady-State%20Analysis%20of%20the%20Work/Energy%20Cost%20Transfer%20Function&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chance,%20B.&rft.date=1985-12-01&rft.volume=82&rft.issue=24&rft.spage=8384&rft.epage=8388&rft.pages=8384-8388&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.82.24.8384&rft_dat=%3Cjstor_pnas_%3E26593%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76542238&rft_id=info:pmid/3866229&rft_jstor_id=26593&rfr_iscdi=true |