Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function

The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1985-12, Vol.82 (24), p.8384-8388
Hauptverfasser: Chance, B., Leigh, J. S., Clark, B. J., Maris, J., Kent, J., Nioka, S., Smith, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8388
container_issue 24
container_start_page 8384
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 82
creator Chance, B.
Leigh, J. S.
Clark, B. J.
Maris, J.
Kent, J.
Nioka, S.
Smith, D.
description The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.
doi_str_mv 10.1073/pnas.82.24.8384
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_26593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26593</jstor_id><sourcerecordid>26593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</originalsourceid><addsrcrecordid>eNp9kcFv0zAYxSMEGmVwRkIC-YDglNax4yRG4lCVjSFt2qFDHC03-dx5c-3Odqblr-BfxlGrCC6cfHi_9z7rvSx7W-B5gWu62FsZ5g2Zk3Le0KZ8ls0KzIu8Kjl-ns0wJnXelKR8mb0K4Q5jzFmDT7IT2lQVIXyW_V45G70zyCl0_aQ7GfUjoCuIcuOMDjskbZeEYQsWfQOTRD8gbdFFv5MWre_BJNSgqz60Br6gJVpHkN2Qr6OMgJZWmiHoMKbHW0C_nL9fnFnw2wGtXIjoxksbFHh03ts2amdfZy-UNAHeHN_T7Of52c3qIr-8_v5jtbzMW8aqmFPOOsaJUpUiXVeXuFAcqlJ2rGW8VhhqVlDMyw7URtGCtpy0hOGO8LqmwCk9zb4ecvf9ZgddC6kFacTe6530g3BSi38Vq2_F1j0KyjEnOPk_Hf3ePfQQotjp0IIx0oLrg6grVhJCmwQuDmDrXQge1HSjwGKcUIwTioYIUopxwuR4__fXJv64WdI_HnUZWmlUqrDVYcKaqmAVqxP2-YiN-ZM63RGqNybCU0zkh_-SCXh3AO5CdH4iSMVSk38AK_HICw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76542238</pqid></control><display><type>article</type><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</creator><creatorcontrib>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</creatorcontrib><description>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.82.24.8384</identifier><identifier>PMID: 3866229</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine triphosphatases ; Adenosine Triphosphate - metabolism ; Biochemistry ; Biological and medical sciences ; Biomechanics. Biorheology ; Cellular metabolism ; Creatine ; Cytosol - metabolism ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Humans ; Hydrogen-Ion Concentration ; Hyperbolas ; Hypoxia - metabolism ; Kinetics ; Magnetic Resonance Spectroscopy ; Metabolism ; Mitochondria, Muscle - metabolism ; Muscles - metabolism ; Oxygen ; Oxygen - metabolism ; Phosphates ; Phosphates - metabolism ; Phosphocreatine - metabolism ; Physical Exertion ; Space life sciences ; Tissues, organs and organisms biophysics ; Transfer functions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1985-12, Vol.82 (24), p.8384-8388</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/82/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26593$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26593$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8615657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3866229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chance, B.</creatorcontrib><creatorcontrib>Leigh, J. S.</creatorcontrib><creatorcontrib>Clark, B. J.</creatorcontrib><creatorcontrib>Maris, J.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Nioka, S.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Cellular metabolism</subject><subject>Creatine</subject><subject>Cytosol - metabolism</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hyperbolas</subject><subject>Hypoxia - metabolism</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolism</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscles - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Phosphocreatine - metabolism</subject><subject>Physical Exertion</subject><subject>Space life sciences</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Transfer functions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFv0zAYxSMEGmVwRkIC-YDglNax4yRG4lCVjSFt2qFDHC03-dx5c-3Odqblr-BfxlGrCC6cfHi_9z7rvSx7W-B5gWu62FsZ5g2Zk3Le0KZ8ls0KzIu8Kjl-ns0wJnXelKR8mb0K4Q5jzFmDT7IT2lQVIXyW_V45G70zyCl0_aQ7GfUjoCuIcuOMDjskbZeEYQsWfQOTRD8gbdFFv5MWre_BJNSgqz60Br6gJVpHkN2Qr6OMgJZWmiHoMKbHW0C_nL9fnFnw2wGtXIjoxksbFHh03ts2amdfZy-UNAHeHN_T7Of52c3qIr-8_v5jtbzMW8aqmFPOOsaJUpUiXVeXuFAcqlJ2rGW8VhhqVlDMyw7URtGCtpy0hOGO8LqmwCk9zb4ecvf9ZgddC6kFacTe6530g3BSi38Vq2_F1j0KyjEnOPk_Hf3ePfQQotjp0IIx0oLrg6grVhJCmwQuDmDrXQge1HSjwGKcUIwTioYIUopxwuR4__fXJv64WdI_HnUZWmlUqrDVYcKaqmAVqxP2-YiN-ZM63RGqNybCU0zkh_-SCXh3AO5CdH4iSMVSk38AK_HICw</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>Chance, B.</creator><creator>Leigh, J. S.</creator><creator>Clark, B. J.</creator><creator>Maris, J.</creator><creator>Kent, J.</creator><creator>Nioka, S.</creator><creator>Smith, D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19851201</creationdate><title>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</title><author>Chance, B. ; Leigh, J. S. ; Clark, B. J. ; Maris, J. ; Kent, J. ; Nioka, S. ; Smith, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-395d592ff6f2dd7401f9e64ad5c597f0e7513094defbf313c92c250d29773e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Cellular metabolism</topic><topic>Creatine</topic><topic>Cytosol - metabolism</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hyperbolas</topic><topic>Hypoxia - metabolism</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolism</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscles - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Phosphocreatine - metabolism</topic><topic>Physical Exertion</topic><topic>Space life sciences</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chance, B.</creatorcontrib><creatorcontrib>Leigh, J. S.</creatorcontrib><creatorcontrib>Clark, B. J.</creatorcontrib><creatorcontrib>Maris, J.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Nioka, S.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chance, B.</au><au>Leigh, J. S.</au><au>Clark, B. J.</au><au>Maris, J.</au><au>Kent, J.</au><au>Nioka, S.</au><au>Smith, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1985-12-01</date><risdate>1985</risdate><volume>82</volume><issue>24</issue><spage>8384</spage><epage>8388</epage><pages>8384-8388</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3866229</pmid><doi>10.1073/pnas.82.24.8384</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1985-12, Vol.82 (24), p.8384-8388
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26593
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Diphosphate - metabolism
Adenosine triphosphatases
Adenosine Triphosphate - metabolism
Biochemistry
Biological and medical sciences
Biomechanics. Biorheology
Cellular metabolism
Creatine
Cytosol - metabolism
Energy Metabolism
Fundamental and applied biological sciences. Psychology
Humans
Hydrogen-Ion Concentration
Hyperbolas
Hypoxia - metabolism
Kinetics
Magnetic Resonance Spectroscopy
Metabolism
Mitochondria, Muscle - metabolism
Muscles - metabolism
Oxygen
Oxygen - metabolism
Phosphates
Phosphates - metabolism
Phosphocreatine - metabolism
Physical Exertion
Space life sciences
Tissues, organs and organisms biophysics
Transfer functions
title Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Oxidative%20Metabolism%20and%20Oxygen%20Delivery%20in%20Human%20Skeletal%20Muscle:%20A%20Steady-State%20Analysis%20of%20the%20Work/Energy%20Cost%20Transfer%20Function&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chance,%20B.&rft.date=1985-12-01&rft.volume=82&rft.issue=24&rft.spage=8384&rft.epage=8388&rft.pages=8384-8388&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.82.24.8384&rft_dat=%3Cjstor_pnas_%3E26593%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76542238&rft_id=info:pmid/3866229&rft_jstor_id=26593&rfr_iscdi=true