Control of Oxidative Metabolism and Oxygen Delivery in Human Skeletal Muscle: A Steady-State Analysis of the Work/Energy Cost Transfer Function
The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1985-12, Vol.82 (24), p.8384-8388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concept of transfer function for organ performance (work output vs. biochemical input) is developed for skeletal and cardiac muscle under steady-state exercise conditions. For metabolic control by the ADP concentration, the transfer function approximates a Michaelis-Menten hyperbola. Variation of the work identifies metabolic operating points on the transfer function corresponding to ADP concentrations or to a ratio of inorganic phosphate to phosphocreatine that can be determined by phosphorus nuclear magnetic resonance. This operating point is characterized by the fraction (V/Vmax) of maximal activity of oxidative metabolism in the steady state. This quantity appears to be useful in predicting the degree to which metabolic homeostasis is effective; poorly controlled metabolic states can readily be identified and are used in the diagnosis and therapy of metabolic disease in the organs of neonates and adults. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.82.24.8384 |