ON n-TRIVIAL EXTENSIONS OF RINGS

The notion of trivial extension of a ring by a module has been extensively studied and used in ring theory as well as in various other areas of research such as cohomology theory, representation theory, category theory and homological algebra. In this paper, we extend this classical ring constructio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2017-01, Vol.47 (8), p.2439-2511
Hauptverfasser: ANDERSON, D.D., BENNIS, DRISS, FAHID, BRAHIM, SHAIEA, ABDULAZIZ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2511
container_issue 8
container_start_page 2439
container_title The Rocky Mountain journal of mathematics
container_volume 47
creator ANDERSON, D.D.
BENNIS, DRISS
FAHID, BRAHIM
SHAIEA, ABDULAZIZ
description The notion of trivial extension of a ring by a module has been extensively studied and used in ring theory as well as in various other areas of research such as cohomology theory, representation theory, category theory and homological algebra. In this paper, we extend this classical ring construction by associating a ring to a ring R and a family M = ( M i ) i = 1 n of n R-modules for a given integer n ≥ 1. We call this new ring construction an n-trivial extension of R by M. In particular, the classical trivial extension will merely be the 1-trivial extension. Thus, we generalize several known results on the classical trivial extension to the setting of n-trivial extensions, and we give some new ones. Various ring-theoretic constructions and properties of n-trivial extensions are studied, and a detailed investigation of the graded aspect of n-trivial extensions is also given. We finish the paper with an investigation of various divisibility properties of n-trivial extensions. In this context, several open questions arise.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26579663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26579663</jstor_id><sourcerecordid>26579663</sourcerecordid><originalsourceid>FETCH-jstor_primary_265796633</originalsourceid><addsrcrecordid>eNpjYuA0tDQx1TU2tzRlYeA0MDA21TU3tTTjYOAqLs4yMDA0MbU05mRQ9vdT-DB34mzdkCDPME9HHwXXiBBXv2BPf79gBX83hSBPP_dgHgbWtMSc4lReKM3NIOvmGuLsoZtVXJJfFF9QlJmbWFQZb2Rmam5pZmZsTEgeAH09KVg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON n-TRIVIAL EXTENSIONS OF RINGS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>ANDERSON, D.D. ; BENNIS, DRISS ; FAHID, BRAHIM ; SHAIEA, ABDULAZIZ</creator><creatorcontrib>ANDERSON, D.D. ; BENNIS, DRISS ; FAHID, BRAHIM ; SHAIEA, ABDULAZIZ</creatorcontrib><description>The notion of trivial extension of a ring by a module has been extensively studied and used in ring theory as well as in various other areas of research such as cohomology theory, representation theory, category theory and homological algebra. In this paper, we extend this classical ring construction by associating a ring to a ring R and a family M = ( M i ) i = 1 n of n R-modules for a given integer n ≥ 1. We call this new ring construction an n-trivial extension of R by M. In particular, the classical trivial extension will merely be the 1-trivial extension. Thus, we generalize several known results on the classical trivial extension to the setting of n-trivial extensions, and we give some new ones. Various ring-theoretic constructions and properties of n-trivial extensions are studied, and a detailed investigation of the graded aspect of n-trivial extensions is also given. We finish the paper with an investigation of various divisibility properties of n-trivial extensions. In this context, several open questions arise.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><language>eng</language><publisher>Rocky Mountain Mathematics Consortium</publisher><ispartof>The Rocky Mountain journal of mathematics, 2017-01, Vol.47 (8), p.2439-2511</ispartof><rights>Copyright ©2017 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26579663$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26579663$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>ANDERSON, D.D.</creatorcontrib><creatorcontrib>BENNIS, DRISS</creatorcontrib><creatorcontrib>FAHID, BRAHIM</creatorcontrib><creatorcontrib>SHAIEA, ABDULAZIZ</creatorcontrib><title>ON n-TRIVIAL EXTENSIONS OF RINGS</title><title>The Rocky Mountain journal of mathematics</title><description>The notion of trivial extension of a ring by a module has been extensively studied and used in ring theory as well as in various other areas of research such as cohomology theory, representation theory, category theory and homological algebra. In this paper, we extend this classical ring construction by associating a ring to a ring R and a family M = ( M i ) i = 1 n of n R-modules for a given integer n ≥ 1. We call this new ring construction an n-trivial extension of R by M. In particular, the classical trivial extension will merely be the 1-trivial extension. Thus, we generalize several known results on the classical trivial extension to the setting of n-trivial extensions, and we give some new ones. Various ring-theoretic constructions and properties of n-trivial extensions are studied, and a detailed investigation of the graded aspect of n-trivial extensions is also given. We finish the paper with an investigation of various divisibility properties of n-trivial extensions. In this context, several open questions arise.</description><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0tDQx1TU2tzRlYeA0MDA21TU3tTTjYOAqLs4yMDA0MbU05mRQ9vdT-DB34mzdkCDPME9HHwXXiBBXv2BPf79gBX83hSBPP_dgHgbWtMSc4lReKM3NIOvmGuLsoZtVXJJfFF9QlJmbWFQZb2Rmam5pZmZsTEgeAH09KVg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>ANDERSON, D.D.</creator><creator>BENNIS, DRISS</creator><creator>FAHID, BRAHIM</creator><creator>SHAIEA, ABDULAZIZ</creator><general>Rocky Mountain Mathematics Consortium</general><scope/></search><sort><creationdate>20170101</creationdate><title>ON n-TRIVIAL EXTENSIONS OF RINGS</title><author>ANDERSON, D.D. ; BENNIS, DRISS ; FAHID, BRAHIM ; SHAIEA, ABDULAZIZ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_265796633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDERSON, D.D.</creatorcontrib><creatorcontrib>BENNIS, DRISS</creatorcontrib><creatorcontrib>FAHID, BRAHIM</creatorcontrib><creatorcontrib>SHAIEA, ABDULAZIZ</creatorcontrib><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDERSON, D.D.</au><au>BENNIS, DRISS</au><au>FAHID, BRAHIM</au><au>SHAIEA, ABDULAZIZ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON n-TRIVIAL EXTENSIONS OF RINGS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>47</volume><issue>8</issue><spage>2439</spage><epage>2511</epage><pages>2439-2511</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>The notion of trivial extension of a ring by a module has been extensively studied and used in ring theory as well as in various other areas of research such as cohomology theory, representation theory, category theory and homological algebra. In this paper, we extend this classical ring construction by associating a ring to a ring R and a family M = ( M i ) i = 1 n of n R-modules for a given integer n ≥ 1. We call this new ring construction an n-trivial extension of R by M. In particular, the classical trivial extension will merely be the 1-trivial extension. Thus, we generalize several known results on the classical trivial extension to the setting of n-trivial extensions, and we give some new ones. Various ring-theoretic constructions and properties of n-trivial extensions are studied, and a detailed investigation of the graded aspect of n-trivial extensions is also given. We finish the paper with an investigation of various divisibility properties of n-trivial extensions. In this context, several open questions arise.</abstract><pub>Rocky Mountain Mathematics Consortium</pub></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2017-01, Vol.47 (8), p.2439-2511
issn 0035-7596
1945-3795
language eng
recordid cdi_jstor_primary_26579663
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
title ON n-TRIVIAL EXTENSIONS OF RINGS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20n-TRIVIAL%20EXTENSIONS%20OF%20RINGS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=ANDERSON,%20D.D.&rft.date=2017-01-01&rft.volume=47&rft.issue=8&rft.spage=2439&rft.epage=2511&rft.pages=2439-2511&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/&rft_dat=%3Cjstor%3E26579663%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26579663&rfr_iscdi=true