Carnosic acid biosynthesis elucidated by a synthetic biology platform
Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (13), p.3681-3686 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3686 |
---|---|
container_issue | 13 |
container_start_page | 3681 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Ignea, Codruta Athanasakoglou, Anastasia Ioannou, Efstathia Georgantea, Panagiota Trikka, Fotini A. Loupassaki, Sofia Roussis, Vassilios Makris, Antonios M. Kampranis, Sotirios C. |
description | Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies. |
doi_str_mv | 10.1073/pnas.1523787113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_26468859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468859</jstor_id><sourcerecordid>26468859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</originalsourceid><addsrcrecordid>eNpdkdtLwzAUh4Mobl6efVILvvjSLZfm9iLImBcY-LL3kKbp1tE1M2mF_vdmbM4pBALnfOcjJz8AbhAcIcjJeNPoMEIUEy44QuQEDBGUKGWZhKdgCCHmqchwNgAXIawghJIKeA4GmEnOqKRDMJ1o37hQmUSbqkjyyoW-aZc2VCGxdRdrurWx3ic62XXayEasdos-2dS6LZ1fX4GzUtfBXu_vSzB_mc4nb-ns4_V98jxLDSWkTSmVqLCZ0FgaUVjIM61JjiG2DBsqiyIjpcTM0hyWmOpC2lLmwgqaG8EjegmedtpNl69tYWzTel2rja_W2vfK6Ur97TTVUi3cl8oExozAKHjcC7z77Gxo1boKxta1bqzrgkKccymI5DKiD__Qlet8E7eLlIBCsviZkRrvKONdCN6Wh8cgqLYJqW1C6jehOHF3vMOB_4kkAvd7YDt50CGi4iFMoEjc7ohVaJ0_MmRMCCrJN3GbogA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780896095</pqid></control><display><type>article</type><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</creator><creatorcontrib>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</creatorcontrib><description>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1523787113</identifier><identifier>PMID: 26976595</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antioxidants ; Antioxidants - chemistry ; Antioxidants - metabolism ; Biological Sciences ; Biosynthesis ; Biosynthetic Pathways ; Biotechnology ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Diterpenes, Abietane - biosynthesis ; Diterpenes, Abietane - chemistry ; Enzymes ; Genomics ; Metabolic Engineering ; Oxidation ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rosmarinus - genetics ; Rosmarinus - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Salvia - genetics ; Salvia - metabolism ; Synthetic Biology - methods ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (13), p.3681-3686</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 29, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</citedby><cites>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</cites><orcidid>0000-0001-6208-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26976595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignea, Codruta</creatorcontrib><creatorcontrib>Athanasakoglou, Anastasia</creatorcontrib><creatorcontrib>Ioannou, Efstathia</creatorcontrib><creatorcontrib>Georgantea, Panagiota</creatorcontrib><creatorcontrib>Trikka, Fotini A.</creatorcontrib><creatorcontrib>Loupassaki, Sofia</creatorcontrib><creatorcontrib>Roussis, Vassilios</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</description><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Diterpenes, Abietane - biosynthesis</subject><subject>Diterpenes, Abietane - chemistry</subject><subject>Enzymes</subject><subject>Genomics</subject><subject>Metabolic Engineering</subject><subject>Oxidation</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rosmarinus - genetics</subject><subject>Rosmarinus - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Salvia - genetics</subject><subject>Salvia - metabolism</subject><subject>Synthetic Biology - methods</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdtLwzAUh4Mobl6efVILvvjSLZfm9iLImBcY-LL3kKbp1tE1M2mF_vdmbM4pBALnfOcjJz8AbhAcIcjJeNPoMEIUEy44QuQEDBGUKGWZhKdgCCHmqchwNgAXIawghJIKeA4GmEnOqKRDMJ1o37hQmUSbqkjyyoW-aZc2VCGxdRdrurWx3ic62XXayEasdos-2dS6LZ1fX4GzUtfBXu_vSzB_mc4nb-ns4_V98jxLDSWkTSmVqLCZ0FgaUVjIM61JjiG2DBsqiyIjpcTM0hyWmOpC2lLmwgqaG8EjegmedtpNl69tYWzTel2rja_W2vfK6Ur97TTVUi3cl8oExozAKHjcC7z77Gxo1boKxta1bqzrgkKccymI5DKiD__Qlet8E7eLlIBCsviZkRrvKONdCN6Wh8cgqLYJqW1C6jehOHF3vMOB_4kkAvd7YDt50CGi4iFMoEjc7ohVaJ0_MmRMCCrJN3GbogA</recordid><startdate>20160329</startdate><enddate>20160329</enddate><creator>Ignea, Codruta</creator><creator>Athanasakoglou, Anastasia</creator><creator>Ioannou, Efstathia</creator><creator>Georgantea, Panagiota</creator><creator>Trikka, Fotini A.</creator><creator>Loupassaki, Sofia</creator><creator>Roussis, Vassilios</creator><creator>Makris, Antonios M.</creator><creator>Kampranis, Sotirios C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6208-1684</orcidid></search><sort><creationdate>20160329</creationdate><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><author>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Diterpenes, Abietane - biosynthesis</topic><topic>Diterpenes, Abietane - chemistry</topic><topic>Enzymes</topic><topic>Genomics</topic><topic>Metabolic Engineering</topic><topic>Oxidation</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rosmarinus - genetics</topic><topic>Rosmarinus - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Salvia - genetics</topic><topic>Salvia - metabolism</topic><topic>Synthetic Biology - methods</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignea, Codruta</creatorcontrib><creatorcontrib>Athanasakoglou, Anastasia</creatorcontrib><creatorcontrib>Ioannou, Efstathia</creatorcontrib><creatorcontrib>Georgantea, Panagiota</creatorcontrib><creatorcontrib>Trikka, Fotini A.</creatorcontrib><creatorcontrib>Loupassaki, Sofia</creatorcontrib><creatorcontrib>Roussis, Vassilios</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignea, Codruta</au><au>Athanasakoglou, Anastasia</au><au>Ioannou, Efstathia</au><au>Georgantea, Panagiota</au><au>Trikka, Fotini A.</au><au>Loupassaki, Sofia</au><au>Roussis, Vassilios</au><au>Makris, Antonios M.</au><au>Kampranis, Sotirios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carnosic acid biosynthesis elucidated by a synthetic biology platform</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-29</date><risdate>2016</risdate><volume>113</volume><issue>13</issue><spage>3681</spage><epage>3686</epage><pages>3681-3686</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26976595</pmid><doi>10.1073/pnas.1523787113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6208-1684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (13), p.3681-3686 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_26468859 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Antioxidants Antioxidants - chemistry Antioxidants - metabolism Biological Sciences Biosynthesis Biosynthetic Pathways Biotechnology Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Diterpenes, Abietane - biosynthesis Diterpenes, Abietane - chemistry Enzymes Genomics Metabolic Engineering Oxidation Plant Proteins - genetics Plant Proteins - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism Rosmarinus - genetics Rosmarinus - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Salvia - genetics Salvia - metabolism Synthetic Biology - methods Yeast |
title | Carnosic acid biosynthesis elucidated by a synthetic biology platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carnosic%20acid%20biosynthesis%20elucidated%20by%20a%20synthetic%20biology%20platform&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ignea,%20Codruta&rft.date=2016-03-29&rft.volume=113&rft.issue=13&rft.spage=3681&rft.epage=3686&rft.pages=3681-3686&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1523787113&rft_dat=%3Cjstor_proqu%3E26468859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780896095&rft_id=info:pmid/26976595&rft_jstor_id=26468859&rfr_iscdi=true |