Carnosic acid biosynthesis elucidated by a synthetic biology platform

Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (13), p.3681-3686
Hauptverfasser: Ignea, Codruta, Athanasakoglou, Anastasia, Ioannou, Efstathia, Georgantea, Panagiota, Trikka, Fotini A., Loupassaki, Sofia, Roussis, Vassilios, Makris, Antonios M., Kampranis, Sotirios C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3686
container_issue 13
container_start_page 3681
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Ignea, Codruta
Athanasakoglou, Anastasia
Ioannou, Efstathia
Georgantea, Panagiota
Trikka, Fotini A.
Loupassaki, Sofia
Roussis, Vassilios
Makris, Antonios M.
Kampranis, Sotirios C.
description Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.
doi_str_mv 10.1073/pnas.1523787113
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_26468859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468859</jstor_id><sourcerecordid>26468859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</originalsourceid><addsrcrecordid>eNpdkdtLwzAUh4Mobl6efVILvvjSLZfm9iLImBcY-LL3kKbp1tE1M2mF_vdmbM4pBALnfOcjJz8AbhAcIcjJeNPoMEIUEy44QuQEDBGUKGWZhKdgCCHmqchwNgAXIawghJIKeA4GmEnOqKRDMJ1o37hQmUSbqkjyyoW-aZc2VCGxdRdrurWx3ic62XXayEasdos-2dS6LZ1fX4GzUtfBXu_vSzB_mc4nb-ns4_V98jxLDSWkTSmVqLCZ0FgaUVjIM61JjiG2DBsqiyIjpcTM0hyWmOpC2lLmwgqaG8EjegmedtpNl69tYWzTel2rja_W2vfK6Ur97TTVUi3cl8oExozAKHjcC7z77Gxo1boKxta1bqzrgkKccymI5DKiD__Qlet8E7eLlIBCsviZkRrvKONdCN6Wh8cgqLYJqW1C6jehOHF3vMOB_4kkAvd7YDt50CGi4iFMoEjc7ohVaJ0_MmRMCCrJN3GbogA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780896095</pqid></control><display><type>article</type><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</creator><creatorcontrib>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</creatorcontrib><description>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1523787113</identifier><identifier>PMID: 26976595</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antioxidants ; Antioxidants - chemistry ; Antioxidants - metabolism ; Biological Sciences ; Biosynthesis ; Biosynthetic Pathways ; Biotechnology ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Diterpenes, Abietane - biosynthesis ; Diterpenes, Abietane - chemistry ; Enzymes ; Genomics ; Metabolic Engineering ; Oxidation ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rosmarinus - genetics ; Rosmarinus - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Salvia - genetics ; Salvia - metabolism ; Synthetic Biology - methods ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (13), p.3681-3686</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 29, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</citedby><cites>FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</cites><orcidid>0000-0001-6208-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26976595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignea, Codruta</creatorcontrib><creatorcontrib>Athanasakoglou, Anastasia</creatorcontrib><creatorcontrib>Ioannou, Efstathia</creatorcontrib><creatorcontrib>Georgantea, Panagiota</creatorcontrib><creatorcontrib>Trikka, Fotini A.</creatorcontrib><creatorcontrib>Loupassaki, Sofia</creatorcontrib><creatorcontrib>Roussis, Vassilios</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</description><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Diterpenes, Abietane - biosynthesis</subject><subject>Diterpenes, Abietane - chemistry</subject><subject>Enzymes</subject><subject>Genomics</subject><subject>Metabolic Engineering</subject><subject>Oxidation</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rosmarinus - genetics</subject><subject>Rosmarinus - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Salvia - genetics</subject><subject>Salvia - metabolism</subject><subject>Synthetic Biology - methods</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdtLwzAUh4Mobl6efVILvvjSLZfm9iLImBcY-LL3kKbp1tE1M2mF_vdmbM4pBALnfOcjJz8AbhAcIcjJeNPoMEIUEy44QuQEDBGUKGWZhKdgCCHmqchwNgAXIawghJIKeA4GmEnOqKRDMJ1o37hQmUSbqkjyyoW-aZc2VCGxdRdrurWx3ic62XXayEasdos-2dS6LZ1fX4GzUtfBXu_vSzB_mc4nb-ns4_V98jxLDSWkTSmVqLCZ0FgaUVjIM61JjiG2DBsqiyIjpcTM0hyWmOpC2lLmwgqaG8EjegmedtpNl69tYWzTel2rja_W2vfK6Ur97TTVUi3cl8oExozAKHjcC7z77Gxo1boKxta1bqzrgkKccymI5DKiD__Qlet8E7eLlIBCsviZkRrvKONdCN6Wh8cgqLYJqW1C6jehOHF3vMOB_4kkAvd7YDt50CGi4iFMoEjc7ohVaJ0_MmRMCCrJN3GbogA</recordid><startdate>20160329</startdate><enddate>20160329</enddate><creator>Ignea, Codruta</creator><creator>Athanasakoglou, Anastasia</creator><creator>Ioannou, Efstathia</creator><creator>Georgantea, Panagiota</creator><creator>Trikka, Fotini A.</creator><creator>Loupassaki, Sofia</creator><creator>Roussis, Vassilios</creator><creator>Makris, Antonios M.</creator><creator>Kampranis, Sotirios C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6208-1684</orcidid></search><sort><creationdate>20160329</creationdate><title>Carnosic acid biosynthesis elucidated by a synthetic biology platform</title><author>Ignea, Codruta ; Athanasakoglou, Anastasia ; Ioannou, Efstathia ; Georgantea, Panagiota ; Trikka, Fotini A. ; Loupassaki, Sofia ; Roussis, Vassilios ; Makris, Antonios M. ; Kampranis, Sotirios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-5591de48a29c8de074aa3b202e62c59dd43f926e5b0f25ad9ef9b8e85bc87aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Diterpenes, Abietane - biosynthesis</topic><topic>Diterpenes, Abietane - chemistry</topic><topic>Enzymes</topic><topic>Genomics</topic><topic>Metabolic Engineering</topic><topic>Oxidation</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rosmarinus - genetics</topic><topic>Rosmarinus - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Salvia - genetics</topic><topic>Salvia - metabolism</topic><topic>Synthetic Biology - methods</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignea, Codruta</creatorcontrib><creatorcontrib>Athanasakoglou, Anastasia</creatorcontrib><creatorcontrib>Ioannou, Efstathia</creatorcontrib><creatorcontrib>Georgantea, Panagiota</creatorcontrib><creatorcontrib>Trikka, Fotini A.</creatorcontrib><creatorcontrib>Loupassaki, Sofia</creatorcontrib><creatorcontrib>Roussis, Vassilios</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignea, Codruta</au><au>Athanasakoglou, Anastasia</au><au>Ioannou, Efstathia</au><au>Georgantea, Panagiota</au><au>Trikka, Fotini A.</au><au>Loupassaki, Sofia</au><au>Roussis, Vassilios</au><au>Makris, Antonios M.</au><au>Kampranis, Sotirios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carnosic acid biosynthesis elucidated by a synthetic biology platform</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-29</date><risdate>2016</risdate><volume>113</volume><issue>13</issue><spage>3681</spage><epage>3686</epage><pages>3681-3686</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26976595</pmid><doi>10.1073/pnas.1523787113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6208-1684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (13), p.3681-3686
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26468859
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antioxidants
Antioxidants - chemistry
Antioxidants - metabolism
Biological Sciences
Biosynthesis
Biosynthetic Pathways
Biotechnology
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Diterpenes, Abietane - biosynthesis
Diterpenes, Abietane - chemistry
Enzymes
Genomics
Metabolic Engineering
Oxidation
Plant Proteins - genetics
Plant Proteins - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Rosmarinus - genetics
Rosmarinus - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Salvia - genetics
Salvia - metabolism
Synthetic Biology - methods
Yeast
title Carnosic acid biosynthesis elucidated by a synthetic biology platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carnosic%20acid%20biosynthesis%20elucidated%20by%20a%20synthetic%20biology%20platform&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ignea,%20Codruta&rft.date=2016-03-29&rft.volume=113&rft.issue=13&rft.spage=3681&rft.epage=3686&rft.pages=3681-3686&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1523787113&rft_dat=%3Cjstor_proqu%3E26468859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780896095&rft_id=info:pmid/26976595&rft_jstor_id=26468859&rfr_iscdi=true