Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts
Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and cate...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-02, Vol.113 (8), p.1987-1992 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1992 |
---|---|
container_issue | 8 |
container_start_page | 1987 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Fay, Meredith E. Myers, David R. Kumar, Amit Turbyfield, Cory T. Byler, Rebecca Crawford, Kaci Mannino, Robert G. Laohapant, Alvin Tyburski, Erika A. Sakurai, Yumiko Rosenbluth, Michael J. Switz, Neil A. Sulchek, Todd A. Graham, Michael D. Lam, Wilbur A. |
description | Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing. |
doi_str_mv | 10.1073/pnas.1508920113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_26467794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467794</jstor_id><sourcerecordid>26467794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</originalsourceid><addsrcrecordid>eNqNkT2PEzEYhC0E4sJBTQVaiYaC3L3-tpuTUMSXdBIN1JbX9uac29jB3kXKv8dRjhCoqFz4mdE7Mwi9xHCFQdLrXbL1CnNQmgDG9BFaYNB4KZiGx2gBQORSMcIu0LNaNwCguYKn6IIIxRUDWKDtKozjPNrS1TxMIcW07rbBRzuF2o1hvs9uP4XOh60t65jsFHPqbPLdVOwwRHffBO-66S6U0O-7mFwJth5M3BhTdHbs-jFn37k8p6k-R08GO9bw4uG9RN8_fvi2-ry8_frpy-r97dIxraclVySA6LEOTpCWM4ByEnsygAepvFZSe-mwEL6npAccCKceC8dtUAOjnF6im6Pvbu5bGhdSO3c0uxJbjL3JNpq_f1K8M-v80zApBePQDN4-GJT8Yw51MttYXavKppDnarBUnFCqMf8PVCgsuNKsoW_-QTd5Lqk10ShJGKeSi0ZdHylXcq0lDKe7MZjD6uawuvmzelO8Po974n_PfAYclCc7TI0yuNXZgFdHYFOnXM4MmJCyXf4L3qy99A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772453756</pqid></control><display><type>article</type><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</creator><creatorcontrib>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</creatorcontrib><description>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508920113</identifier><identifier>PMID: 26858400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Biological Sciences ; Biomechanics ; Catecholamines - pharmacology ; Cell Movement - drug effects ; Cell Movement - physiology ; Female ; Glucocorticoids - pharmacology ; Granulocytes ; Granulocytes - cytology ; Granulocytes - metabolism ; Hormones ; Human subjects ; Humans ; Immune system ; Immunology ; Lab-On-A-Chip Devices ; Leukocyte Count - instrumentation ; Leukocyte Count - methods ; Leukocytes ; Male ; Models, Cardiovascular ; Physical Sciences ; Stem cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (8), p.1987-1992</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 23, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</citedby><cites>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</cites><orcidid>0000-0003-4983-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26858400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Turbyfield, Cory T.</creatorcontrib><creatorcontrib>Byler, Rebecca</creatorcontrib><creatorcontrib>Crawford, Kaci</creatorcontrib><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Laohapant, Alvin</creatorcontrib><creatorcontrib>Tyburski, Erika A.</creatorcontrib><creatorcontrib>Sakurai, Yumiko</creatorcontrib><creatorcontrib>Rosenbluth, Michael J.</creatorcontrib><creatorcontrib>Switz, Neil A.</creatorcontrib><creatorcontrib>Sulchek, Todd A.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</description><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biomechanics</subject><subject>Catecholamines - pharmacology</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - physiology</subject><subject>Female</subject><subject>Glucocorticoids - pharmacology</subject><subject>Granulocytes</subject><subject>Granulocytes - cytology</subject><subject>Granulocytes - metabolism</subject><subject>Hormones</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Lab-On-A-Chip Devices</subject><subject>Leukocyte Count - instrumentation</subject><subject>Leukocyte Count - methods</subject><subject>Leukocytes</subject><subject>Male</subject><subject>Models, Cardiovascular</subject><subject>Physical Sciences</subject><subject>Stem cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkT2PEzEYhC0E4sJBTQVaiYaC3L3-tpuTUMSXdBIN1JbX9uac29jB3kXKv8dRjhCoqFz4mdE7Mwi9xHCFQdLrXbL1CnNQmgDG9BFaYNB4KZiGx2gBQORSMcIu0LNaNwCguYKn6IIIxRUDWKDtKozjPNrS1TxMIcW07rbBRzuF2o1hvs9uP4XOh60t65jsFHPqbPLdVOwwRHffBO-66S6U0O-7mFwJth5M3BhTdHbs-jFn37k8p6k-R08GO9bw4uG9RN8_fvi2-ry8_frpy-r97dIxraclVySA6LEOTpCWM4ByEnsygAepvFZSe-mwEL6npAccCKceC8dtUAOjnF6im6Pvbu5bGhdSO3c0uxJbjL3JNpq_f1K8M-v80zApBePQDN4-GJT8Yw51MttYXavKppDnarBUnFCqMf8PVCgsuNKsoW_-QTd5Lqk10ShJGKeSi0ZdHylXcq0lDKe7MZjD6uawuvmzelO8Po974n_PfAYclCc7TI0yuNXZgFdHYFOnXM4MmJCyXf4L3qy99A</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Fay, Meredith E.</creator><creator>Myers, David R.</creator><creator>Kumar, Amit</creator><creator>Turbyfield, Cory T.</creator><creator>Byler, Rebecca</creator><creator>Crawford, Kaci</creator><creator>Mannino, Robert G.</creator><creator>Laohapant, Alvin</creator><creator>Tyburski, Erika A.</creator><creator>Sakurai, Yumiko</creator><creator>Rosenbluth, Michael J.</creator><creator>Switz, Neil A.</creator><creator>Sulchek, Todd A.</creator><creator>Graham, Michael D.</creator><creator>Lam, Wilbur A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4983-4949</orcidid></search><sort><creationdate>20160223</creationdate><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><author>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biomechanics</topic><topic>Catecholamines - pharmacology</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - physiology</topic><topic>Female</topic><topic>Glucocorticoids - pharmacology</topic><topic>Granulocytes</topic><topic>Granulocytes - cytology</topic><topic>Granulocytes - metabolism</topic><topic>Hormones</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Lab-On-A-Chip Devices</topic><topic>Leukocyte Count - instrumentation</topic><topic>Leukocyte Count - methods</topic><topic>Leukocytes</topic><topic>Male</topic><topic>Models, Cardiovascular</topic><topic>Physical Sciences</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Turbyfield, Cory T.</creatorcontrib><creatorcontrib>Byler, Rebecca</creatorcontrib><creatorcontrib>Crawford, Kaci</creatorcontrib><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Laohapant, Alvin</creatorcontrib><creatorcontrib>Tyburski, Erika A.</creatorcontrib><creatorcontrib>Sakurai, Yumiko</creatorcontrib><creatorcontrib>Rosenbluth, Michael J.</creatorcontrib><creatorcontrib>Switz, Neil A.</creatorcontrib><creatorcontrib>Sulchek, Todd A.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fay, Meredith E.</au><au>Myers, David R.</au><au>Kumar, Amit</au><au>Turbyfield, Cory T.</au><au>Byler, Rebecca</au><au>Crawford, Kaci</au><au>Mannino, Robert G.</au><au>Laohapant, Alvin</au><au>Tyburski, Erika A.</au><au>Sakurai, Yumiko</au><au>Rosenbluth, Michael J.</au><au>Switz, Neil A.</au><au>Sulchek, Todd A.</au><au>Graham, Michael D.</au><au>Lam, Wilbur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>113</volume><issue>8</issue><spage>1987</spage><epage>1992</epage><pages>1987-1992</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26858400</pmid><doi>10.1073/pnas.1508920113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4983-4949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (8), p.1987-1992 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_26467794 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biochemistry Biological Sciences Biomechanics Catecholamines - pharmacology Cell Movement - drug effects Cell Movement - physiology Female Glucocorticoids - pharmacology Granulocytes Granulocytes - cytology Granulocytes - metabolism Hormones Human subjects Humans Immune system Immunology Lab-On-A-Chip Devices Leukocyte Count - instrumentation Leukocyte Count - methods Leukocytes Male Models, Cardiovascular Physical Sciences Stem cells |
title | Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20softening%20mediates%20leukocyte%20demargination%20and%20trafficking,%20thereby%20increasing%20clinical%20blood%20counts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fay,%20Meredith%20E.&rft.date=2016-02-23&rft.volume=113&rft.issue=8&rft.spage=1987&rft.epage=1992&rft.pages=1987-1992&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508920113&rft_dat=%3Cjstor_proqu%3E26467794%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772453756&rft_id=info:pmid/26858400&rft_jstor_id=26467794&rfr_iscdi=true |