Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts

Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and cate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-02, Vol.113 (8), p.1987-1992
Hauptverfasser: Fay, Meredith E., Myers, David R., Kumar, Amit, Turbyfield, Cory T., Byler, Rebecca, Crawford, Kaci, Mannino, Robert G., Laohapant, Alvin, Tyburski, Erika A., Sakurai, Yumiko, Rosenbluth, Michael J., Switz, Neil A., Sulchek, Todd A., Graham, Michael D., Lam, Wilbur A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1992
container_issue 8
container_start_page 1987
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Fay, Meredith E.
Myers, David R.
Kumar, Amit
Turbyfield, Cory T.
Byler, Rebecca
Crawford, Kaci
Mannino, Robert G.
Laohapant, Alvin
Tyburski, Erika A.
Sakurai, Yumiko
Rosenbluth, Michael J.
Switz, Neil A.
Sulchek, Todd A.
Graham, Michael D.
Lam, Wilbur A.
description Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.
doi_str_mv 10.1073/pnas.1508920113
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_26467794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467794</jstor_id><sourcerecordid>26467794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</originalsourceid><addsrcrecordid>eNqNkT2PEzEYhC0E4sJBTQVaiYaC3L3-tpuTUMSXdBIN1JbX9uac29jB3kXKv8dRjhCoqFz4mdE7Mwi9xHCFQdLrXbL1CnNQmgDG9BFaYNB4KZiGx2gBQORSMcIu0LNaNwCguYKn6IIIxRUDWKDtKozjPNrS1TxMIcW07rbBRzuF2o1hvs9uP4XOh60t65jsFHPqbPLdVOwwRHffBO-66S6U0O-7mFwJth5M3BhTdHbs-jFn37k8p6k-R08GO9bw4uG9RN8_fvi2-ry8_frpy-r97dIxraclVySA6LEOTpCWM4ByEnsygAepvFZSe-mwEL6npAccCKceC8dtUAOjnF6im6Pvbu5bGhdSO3c0uxJbjL3JNpq_f1K8M-v80zApBePQDN4-GJT8Yw51MttYXavKppDnarBUnFCqMf8PVCgsuNKsoW_-QTd5Lqk10ShJGKeSi0ZdHylXcq0lDKe7MZjD6uawuvmzelO8Po974n_PfAYclCc7TI0yuNXZgFdHYFOnXM4MmJCyXf4L3qy99A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772453756</pqid></control><display><type>article</type><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</creator><creatorcontrib>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</creatorcontrib><description>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508920113</identifier><identifier>PMID: 26858400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Biological Sciences ; Biomechanics ; Catecholamines - pharmacology ; Cell Movement - drug effects ; Cell Movement - physiology ; Female ; Glucocorticoids - pharmacology ; Granulocytes ; Granulocytes - cytology ; Granulocytes - metabolism ; Hormones ; Human subjects ; Humans ; Immune system ; Immunology ; Lab-On-A-Chip Devices ; Leukocyte Count - instrumentation ; Leukocyte Count - methods ; Leukocytes ; Male ; Models, Cardiovascular ; Physical Sciences ; Stem cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (8), p.1987-1992</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 23, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</citedby><cites>FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</cites><orcidid>0000-0003-4983-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26858400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Turbyfield, Cory T.</creatorcontrib><creatorcontrib>Byler, Rebecca</creatorcontrib><creatorcontrib>Crawford, Kaci</creatorcontrib><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Laohapant, Alvin</creatorcontrib><creatorcontrib>Tyburski, Erika A.</creatorcontrib><creatorcontrib>Sakurai, Yumiko</creatorcontrib><creatorcontrib>Rosenbluth, Michael J.</creatorcontrib><creatorcontrib>Switz, Neil A.</creatorcontrib><creatorcontrib>Sulchek, Todd A.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</description><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biomechanics</subject><subject>Catecholamines - pharmacology</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - physiology</subject><subject>Female</subject><subject>Glucocorticoids - pharmacology</subject><subject>Granulocytes</subject><subject>Granulocytes - cytology</subject><subject>Granulocytes - metabolism</subject><subject>Hormones</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Lab-On-A-Chip Devices</subject><subject>Leukocyte Count - instrumentation</subject><subject>Leukocyte Count - methods</subject><subject>Leukocytes</subject><subject>Male</subject><subject>Models, Cardiovascular</subject><subject>Physical Sciences</subject><subject>Stem cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkT2PEzEYhC0E4sJBTQVaiYaC3L3-tpuTUMSXdBIN1JbX9uac29jB3kXKv8dRjhCoqFz4mdE7Mwi9xHCFQdLrXbL1CnNQmgDG9BFaYNB4KZiGx2gBQORSMcIu0LNaNwCguYKn6IIIxRUDWKDtKozjPNrS1TxMIcW07rbBRzuF2o1hvs9uP4XOh60t65jsFHPqbPLdVOwwRHffBO-66S6U0O-7mFwJth5M3BhTdHbs-jFn37k8p6k-R08GO9bw4uG9RN8_fvi2-ry8_frpy-r97dIxraclVySA6LEOTpCWM4ByEnsygAepvFZSe-mwEL6npAccCKceC8dtUAOjnF6im6Pvbu5bGhdSO3c0uxJbjL3JNpq_f1K8M-v80zApBePQDN4-GJT8Yw51MttYXavKppDnarBUnFCqMf8PVCgsuNKsoW_-QTd5Lqk10ShJGKeSi0ZdHylXcq0lDKe7MZjD6uawuvmzelO8Po974n_PfAYclCc7TI0yuNXZgFdHYFOnXM4MmJCyXf4L3qy99A</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Fay, Meredith E.</creator><creator>Myers, David R.</creator><creator>Kumar, Amit</creator><creator>Turbyfield, Cory T.</creator><creator>Byler, Rebecca</creator><creator>Crawford, Kaci</creator><creator>Mannino, Robert G.</creator><creator>Laohapant, Alvin</creator><creator>Tyburski, Erika A.</creator><creator>Sakurai, Yumiko</creator><creator>Rosenbluth, Michael J.</creator><creator>Switz, Neil A.</creator><creator>Sulchek, Todd A.</creator><creator>Graham, Michael D.</creator><creator>Lam, Wilbur A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4983-4949</orcidid></search><sort><creationdate>20160223</creationdate><title>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</title><author>Fay, Meredith E. ; Myers, David R. ; Kumar, Amit ; Turbyfield, Cory T. ; Byler, Rebecca ; Crawford, Kaci ; Mannino, Robert G. ; Laohapant, Alvin ; Tyburski, Erika A. ; Sakurai, Yumiko ; Rosenbluth, Michael J. ; Switz, Neil A. ; Sulchek, Todd A. ; Graham, Michael D. ; Lam, Wilbur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-582e06b19ec62107e08c71d2f0d078d9879d7c166db32b01e253d16c5ae8f4353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biomechanics</topic><topic>Catecholamines - pharmacology</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - physiology</topic><topic>Female</topic><topic>Glucocorticoids - pharmacology</topic><topic>Granulocytes</topic><topic>Granulocytes - cytology</topic><topic>Granulocytes - metabolism</topic><topic>Hormones</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Lab-On-A-Chip Devices</topic><topic>Leukocyte Count - instrumentation</topic><topic>Leukocyte Count - methods</topic><topic>Leukocytes</topic><topic>Male</topic><topic>Models, Cardiovascular</topic><topic>Physical Sciences</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Turbyfield, Cory T.</creatorcontrib><creatorcontrib>Byler, Rebecca</creatorcontrib><creatorcontrib>Crawford, Kaci</creatorcontrib><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Laohapant, Alvin</creatorcontrib><creatorcontrib>Tyburski, Erika A.</creatorcontrib><creatorcontrib>Sakurai, Yumiko</creatorcontrib><creatorcontrib>Rosenbluth, Michael J.</creatorcontrib><creatorcontrib>Switz, Neil A.</creatorcontrib><creatorcontrib>Sulchek, Todd A.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fay, Meredith E.</au><au>Myers, David R.</au><au>Kumar, Amit</au><au>Turbyfield, Cory T.</au><au>Byler, Rebecca</au><au>Crawford, Kaci</au><au>Mannino, Robert G.</au><au>Laohapant, Alvin</au><au>Tyburski, Erika A.</au><au>Sakurai, Yumiko</au><au>Rosenbluth, Michael J.</au><au>Switz, Neil A.</au><au>Sulchek, Todd A.</au><au>Graham, Michael D.</au><au>Lam, Wilbur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>113</volume><issue>8</issue><spage>1987</spage><epage>1992</epage><pages>1987-1992</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26858400</pmid><doi>10.1073/pnas.1508920113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4983-4949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (8), p.1987-1992
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26467794
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biochemistry
Biological Sciences
Biomechanics
Catecholamines - pharmacology
Cell Movement - drug effects
Cell Movement - physiology
Female
Glucocorticoids - pharmacology
Granulocytes
Granulocytes - cytology
Granulocytes - metabolism
Hormones
Human subjects
Humans
Immune system
Immunology
Lab-On-A-Chip Devices
Leukocyte Count - instrumentation
Leukocyte Count - methods
Leukocytes
Male
Models, Cardiovascular
Physical Sciences
Stem cells
title Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20softening%20mediates%20leukocyte%20demargination%20and%20trafficking,%20thereby%20increasing%20clinical%20blood%20counts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fay,%20Meredith%20E.&rft.date=2016-02-23&rft.volume=113&rft.issue=8&rft.spage=1987&rft.epage=1992&rft.pages=1987-1992&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508920113&rft_dat=%3Cjstor_proqu%3E26467794%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772453756&rft_id=info:pmid/26858400&rft_jstor_id=26467794&rfr_iscdi=true