Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-02, Vol.113 (6), p.1564-1569 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1569 |
---|---|
container_issue | 6 |
container_start_page | 1564 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Liu, Lingling Lu, Yun Martinez, Jennifer Bi, Yujing Lian, Gaojian Wang, Tingting Milasta, Sandra Wang, Jian Yang, Mao Liu, Guangwei Green, Douglas R. Wang, Ruoning |
description | As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation. |
doi_str_mv | 10.1073/pnas.1518000113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26467673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467673</jstor_id><sourcerecordid>26467673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQhy0EoqFw5gTykcu24z9rey9IqKK0UhEc4Gw5aztxtWsv9qYoj8WL9JnqKCUNN06Wxt98M_YPobcEzghIdj5FU85ISxQAEMKeoQWBjjSCd_AcLQCobBSn_AS9KuW2Ml2r4CU6oUIRwlu2QL-_5xSiH8w4mjnlLS5hFc2Ay2aasivFFTzlNATvsplDithEi8s6-Lng0fQ5TWuzcnh0s1lWrIzY5zTir9u-sW5y0bo44znhq-tLcv_nqfYavfBmKO7N43mKfl5-_nFx1dx8-3J98emm6bkkc9NR6ukSuCOcemWFcnxpPVDbAwfWEWZ61nWSAlhwHDxYT01vQUoqDXU9O0Uf995psxyd7evobAY95TCavNXJBP3vTQxrvUp3mksBiqoq-PAoyOnXxpVZj6H0bhhMdGlTNJFSiJa36n9QwUWnpCAVPd-j9QdLyc4fNiKgd8nqXbL6Kdna8f74IQf-b5RHwK7zoCNMi-oRvALv9sBtqUkfCbiQQjL2AAAQtts</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764698761</pqid></control><display><type>article</type><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</creator><creatorcontrib>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</creatorcontrib><description>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1518000113</identifier><identifier>PMID: 26811453</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Cycle - drug effects ; Cell Polarity - drug effects ; Cell Proliferation - drug effects ; Disease Models, Animal ; Gene Deletion ; Glycolysis - drug effects ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Inflammation - metabolism ; Inflammation - pathology ; Interferon-gamma - pharmacology ; Lipopolysaccharides - pharmacology ; Macrophage Colony-Stimulating Factor - pharmacology ; Macrophages - drug effects ; Macrophages - metabolism ; Macrophages - pathology ; Metabolic Networks and Pathways - drug effects ; Metabolic Networks and Pathways - genetics ; Mice, Inbred C57BL ; Mitogens - pharmacology ; Proto-Oncogene Proteins c-myc - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sepsis - metabolism ; Sepsis - pathology ; Signal Transduction - drug effects ; Transcriptome - drug effects ; Transcriptome - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.1564-1569</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</citedby><cites>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467673$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467673$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26811453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Martinez, Jennifer</creatorcontrib><creatorcontrib>Bi, Yujing</creatorcontrib><creatorcontrib>Lian, Gaojian</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Milasta, Sandra</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Green, Douglas R.</creatorcontrib><creatorcontrib>Wang, Ruoning</creatorcontrib><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Disease Models, Animal</subject><subject>Gene Deletion</subject><subject>Glycolysis - drug effects</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Interferon-gamma - pharmacology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophage Colony-Stimulating Factor - pharmacology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Mice, Inbred C57BL</subject><subject>Mitogens - pharmacology</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sepsis - metabolism</subject><subject>Sepsis - pathology</subject><subject>Signal Transduction - drug effects</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQhy0EoqFw5gTykcu24z9rey9IqKK0UhEc4Gw5aztxtWsv9qYoj8WL9JnqKCUNN06Wxt98M_YPobcEzghIdj5FU85ISxQAEMKeoQWBjjSCd_AcLQCobBSn_AS9KuW2Ml2r4CU6oUIRwlu2QL-_5xSiH8w4mjnlLS5hFc2Ay2aasivFFTzlNATvsplDithEi8s6-Lng0fQ5TWuzcnh0s1lWrIzY5zTir9u-sW5y0bo44znhq-tLcv_nqfYavfBmKO7N43mKfl5-_nFx1dx8-3J98emm6bkkc9NR6ukSuCOcemWFcnxpPVDbAwfWEWZ61nWSAlhwHDxYT01vQUoqDXU9O0Uf995psxyd7evobAY95TCavNXJBP3vTQxrvUp3mksBiqoq-PAoyOnXxpVZj6H0bhhMdGlTNJFSiJa36n9QwUWnpCAVPd-j9QdLyc4fNiKgd8nqXbL6Kdna8f74IQf-b5RHwK7zoCNMi-oRvALv9sBtqUkfCbiQQjL2AAAQtts</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Liu, Lingling</creator><creator>Lu, Yun</creator><creator>Martinez, Jennifer</creator><creator>Bi, Yujing</creator><creator>Lian, Gaojian</creator><creator>Wang, Tingting</creator><creator>Milasta, Sandra</creator><creator>Wang, Jian</creator><creator>Yang, Mao</creator><creator>Liu, Guangwei</creator><creator>Green, Douglas R.</creator><creator>Wang, Ruoning</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20160209</creationdate><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><author>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Disease Models, Animal</topic><topic>Gene Deletion</topic><topic>Glycolysis - drug effects</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Interferon-gamma - pharmacology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophage Colony-Stimulating Factor - pharmacology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Mice, Inbred C57BL</topic><topic>Mitogens - pharmacology</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sepsis - metabolism</topic><topic>Sepsis - pathology</topic><topic>Signal Transduction - drug effects</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Martinez, Jennifer</creatorcontrib><creatorcontrib>Bi, Yujing</creatorcontrib><creatorcontrib>Lian, Gaojian</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Milasta, Sandra</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Green, Douglas R.</creatorcontrib><creatorcontrib>Wang, Ruoning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingling</au><au>Lu, Yun</au><au>Martinez, Jennifer</au><au>Bi, Yujing</au><au>Lian, Gaojian</au><au>Wang, Tingting</au><au>Milasta, Sandra</au><au>Wang, Jian</au><au>Yang, Mao</au><au>Liu, Guangwei</au><au>Green, Douglas R.</au><au>Wang, Ruoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>113</volume><issue>6</issue><spage>1564</spage><epage>1569</epage><pages>1564-1569</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26811453</pmid><doi>10.1073/pnas.1518000113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.1564-1569 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_26467673 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cell Cycle - drug effects Cell Polarity - drug effects Cell Proliferation - drug effects Disease Models, Animal Gene Deletion Glycolysis - drug effects Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Inflammation - metabolism Inflammation - pathology Interferon-gamma - pharmacology Lipopolysaccharides - pharmacology Macrophage Colony-Stimulating Factor - pharmacology Macrophages - drug effects Macrophages - metabolism Macrophages - pathology Metabolic Networks and Pathways - drug effects Metabolic Networks and Pathways - genetics Mice, Inbred C57BL Mitogens - pharmacology Proto-Oncogene Proteins c-myc - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Sepsis - metabolism Sepsis - pathology Signal Transduction - drug effects Transcriptome - drug effects Transcriptome - genetics |
title | Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proinflammatory%20signal%20suppresses%20proliferation%20and%20shifts%20macrophage%20metabolism%20from%20Myc-dependent%20to%20HIF1%CE%B1-dependent&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Lingling&rft.date=2016-02-09&rft.volume=113&rft.issue=6&rft.spage=1564&rft.epage=1569&rft.pages=1564-1569&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1518000113&rft_dat=%3Cjstor_cross%3E26467673%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764698761&rft_id=info:pmid/26811453&rft_jstor_id=26467673&rfr_iscdi=true |