Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent

As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-02, Vol.113 (6), p.1564-1569
Hauptverfasser: Liu, Lingling, Lu, Yun, Martinez, Jennifer, Bi, Yujing, Lian, Gaojian, Wang, Tingting, Milasta, Sandra, Wang, Jian, Yang, Mao, Liu, Guangwei, Green, Douglas R., Wang, Ruoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1569
container_issue 6
container_start_page 1564
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Liu, Lingling
Lu, Yun
Martinez, Jennifer
Bi, Yujing
Lian, Gaojian
Wang, Tingting
Milasta, Sandra
Wang, Jian
Yang, Mao
Liu, Guangwei
Green, Douglas R.
Wang, Ruoning
description As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.
doi_str_mv 10.1073/pnas.1518000113
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26467673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467673</jstor_id><sourcerecordid>26467673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQhy0EoqFw5gTykcu24z9rey9IqKK0UhEc4Gw5aztxtWsv9qYoj8WL9JnqKCUNN06Wxt98M_YPobcEzghIdj5FU85ISxQAEMKeoQWBjjSCd_AcLQCobBSn_AS9KuW2Ml2r4CU6oUIRwlu2QL-_5xSiH8w4mjnlLS5hFc2Ay2aasivFFTzlNATvsplDithEi8s6-Lng0fQ5TWuzcnh0s1lWrIzY5zTir9u-sW5y0bo44znhq-tLcv_nqfYavfBmKO7N43mKfl5-_nFx1dx8-3J98emm6bkkc9NR6ukSuCOcemWFcnxpPVDbAwfWEWZ61nWSAlhwHDxYT01vQUoqDXU9O0Uf995psxyd7evobAY95TCavNXJBP3vTQxrvUp3mksBiqoq-PAoyOnXxpVZj6H0bhhMdGlTNJFSiJa36n9QwUWnpCAVPd-j9QdLyc4fNiKgd8nqXbL6Kdna8f74IQf-b5RHwK7zoCNMi-oRvALv9sBtqUkfCbiQQjL2AAAQtts</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764698761</pqid></control><display><type>article</type><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</creator><creatorcontrib>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</creatorcontrib><description>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1518000113</identifier><identifier>PMID: 26811453</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Cycle - drug effects ; Cell Polarity - drug effects ; Cell Proliferation - drug effects ; Disease Models, Animal ; Gene Deletion ; Glycolysis - drug effects ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Inflammation - metabolism ; Inflammation - pathology ; Interferon-gamma - pharmacology ; Lipopolysaccharides - pharmacology ; Macrophage Colony-Stimulating Factor - pharmacology ; Macrophages - drug effects ; Macrophages - metabolism ; Macrophages - pathology ; Metabolic Networks and Pathways - drug effects ; Metabolic Networks and Pathways - genetics ; Mice, Inbred C57BL ; Mitogens - pharmacology ; Proto-Oncogene Proteins c-myc - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sepsis - metabolism ; Sepsis - pathology ; Signal Transduction - drug effects ; Transcriptome - drug effects ; Transcriptome - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.1564-1569</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</citedby><cites>FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467673$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467673$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26811453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Martinez, Jennifer</creatorcontrib><creatorcontrib>Bi, Yujing</creatorcontrib><creatorcontrib>Lian, Gaojian</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Milasta, Sandra</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Green, Douglas R.</creatorcontrib><creatorcontrib>Wang, Ruoning</creatorcontrib><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Disease Models, Animal</subject><subject>Gene Deletion</subject><subject>Glycolysis - drug effects</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Interferon-gamma - pharmacology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophage Colony-Stimulating Factor - pharmacology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Mice, Inbred C57BL</subject><subject>Mitogens - pharmacology</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sepsis - metabolism</subject><subject>Sepsis - pathology</subject><subject>Signal Transduction - drug effects</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQhy0EoqFw5gTykcu24z9rey9IqKK0UhEc4Gw5aztxtWsv9qYoj8WL9JnqKCUNN06Wxt98M_YPobcEzghIdj5FU85ISxQAEMKeoQWBjjSCd_AcLQCobBSn_AS9KuW2Ml2r4CU6oUIRwlu2QL-_5xSiH8w4mjnlLS5hFc2Ay2aasivFFTzlNATvsplDithEi8s6-Lng0fQ5TWuzcnh0s1lWrIzY5zTir9u-sW5y0bo44znhq-tLcv_nqfYavfBmKO7N43mKfl5-_nFx1dx8-3J98emm6bkkc9NR6ukSuCOcemWFcnxpPVDbAwfWEWZ61nWSAlhwHDxYT01vQUoqDXU9O0Uf995psxyd7evobAY95TCavNXJBP3vTQxrvUp3mksBiqoq-PAoyOnXxpVZj6H0bhhMdGlTNJFSiJa36n9QwUWnpCAVPd-j9QdLyc4fNiKgd8nqXbL6Kdna8f74IQf-b5RHwK7zoCNMi-oRvALv9sBtqUkfCbiQQjL2AAAQtts</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Liu, Lingling</creator><creator>Lu, Yun</creator><creator>Martinez, Jennifer</creator><creator>Bi, Yujing</creator><creator>Lian, Gaojian</creator><creator>Wang, Tingting</creator><creator>Milasta, Sandra</creator><creator>Wang, Jian</creator><creator>Yang, Mao</creator><creator>Liu, Guangwei</creator><creator>Green, Douglas R.</creator><creator>Wang, Ruoning</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20160209</creationdate><title>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</title><author>Liu, Lingling ; Lu, Yun ; Martinez, Jennifer ; Bi, Yujing ; Lian, Gaojian ; Wang, Tingting ; Milasta, Sandra ; Wang, Jian ; Yang, Mao ; Liu, Guangwei ; Green, Douglas R. ; Wang, Ruoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-922f2b04e142f8d68e4bdf02dc0403913ac3997200d0e40f0df2acd07727a2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Disease Models, Animal</topic><topic>Gene Deletion</topic><topic>Glycolysis - drug effects</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Interferon-gamma - pharmacology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophage Colony-Stimulating Factor - pharmacology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Mice, Inbred C57BL</topic><topic>Mitogens - pharmacology</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sepsis - metabolism</topic><topic>Sepsis - pathology</topic><topic>Signal Transduction - drug effects</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Martinez, Jennifer</creatorcontrib><creatorcontrib>Bi, Yujing</creatorcontrib><creatorcontrib>Lian, Gaojian</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Milasta, Sandra</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Green, Douglas R.</creatorcontrib><creatorcontrib>Wang, Ruoning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingling</au><au>Lu, Yun</au><au>Martinez, Jennifer</au><au>Bi, Yujing</au><au>Lian, Gaojian</au><au>Wang, Tingting</au><au>Milasta, Sandra</au><au>Wang, Jian</au><au>Yang, Mao</au><au>Liu, Guangwei</au><au>Green, Douglas R.</au><au>Wang, Ruoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>113</volume><issue>6</issue><spage>1564</spage><epage>1569</epage><pages>1564-1569</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1– or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26811453</pmid><doi>10.1073/pnas.1518000113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.1564-1569
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26467673
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cell Cycle - drug effects
Cell Polarity - drug effects
Cell Proliferation - drug effects
Disease Models, Animal
Gene Deletion
Glycolysis - drug effects
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Inflammation - metabolism
Inflammation - pathology
Interferon-gamma - pharmacology
Lipopolysaccharides - pharmacology
Macrophage Colony-Stimulating Factor - pharmacology
Macrophages - drug effects
Macrophages - metabolism
Macrophages - pathology
Metabolic Networks and Pathways - drug effects
Metabolic Networks and Pathways - genetics
Mice, Inbred C57BL
Mitogens - pharmacology
Proto-Oncogene Proteins c-myc - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sepsis - metabolism
Sepsis - pathology
Signal Transduction - drug effects
Transcriptome - drug effects
Transcriptome - genetics
title Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proinflammatory%20signal%20suppresses%20proliferation%20and%20shifts%20macrophage%20metabolism%20from%20Myc-dependent%20to%20HIF1%CE%B1-dependent&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Lingling&rft.date=2016-02-09&rft.volume=113&rft.issue=6&rft.spage=1564&rft.epage=1569&rft.pages=1564-1569&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1518000113&rft_dat=%3Cjstor_cross%3E26467673%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764698761&rft_id=info:pmid/26811453&rft_jstor_id=26467673&rfr_iscdi=true