Core formation and core composition from coupled geochemical and geophysical constraints
The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12310-12314 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12314 |
---|---|
container_issue | 40 |
container_start_page | 12310 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Badro, James Brodholt, John P. Piet, Hélène Siebert, Julien Ryerson, Frederick J. |
description | The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium. |
doi_str_mv | 10.1073/pnas.1505672112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26465351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465351</jstor_id><sourcerecordid>26465351</sourcerecordid><originalsourceid>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</originalsourceid><addsrcrecordid>eNpdktGL1DAQxoMo3rr67JNS9EWE3mWSJm1ehGNRT1jwRcG3kM0m1yxtUpP24P570-26nvcUZvKbL99MBqHXgC8B1_Rq8CpdAsOM1wSAPEErwAJKXgn8FK0wJnXZVKS6QC9SOmCMBWvwc3RBOBWEMbZCvzYhmsKG2KvRBV8ovy_0nNKhH0Jyx6SNoc-JaejMvrg1Qbemd1p1RzrHQ3ufjrEOPo1ROT-ml-iZVV0yr07nGv388vnH5qbcfv_6bXO9LRUHMZZNQxumd9RmN7YWSmtmLNkZTbNVarjClALUyu6NJkIpvuMMbD4szj2Apmv0adEdpl1v9tr4bKCTQ3S9ivcyKCf_v_GulbfhTlYcUwYsC7xbBEIanUzajUa3uRFv9CiBVhTnQa_RxwVqH2nfXG-l82mSmADlAvgdZPjDyVIMvyeTRtm7pE3XKW_ClCTUBFf5acAZff8IPYQp-jywmQJRYUGaTF0tlI4hpWjs2QJgOe-BnPdA_tuDXPH24VTO_N-Pz0BxAubKsxwQWWVJQo_e3izIIY0hPpCoOMuTo38AUJ_DEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721940928</pqid></control><display><type>article</type><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J.</creator><creatorcontrib>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1505672112</identifier><identifier>PMID: 26392555</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Astrophysics ; core composition ; core formation ; Earth and Planetary Astrophysics ; Earth Sciences ; earth's accretion ; experimental petrology ; Geochemistry ; Geophysics ; GEOSCIENCES ; Magma ; mineral physics ; Petrology ; Physical Sciences ; Sciences of the Universe ; Seismology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12310-12314</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</citedby><cites>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</cites><orcidid>0000-0001-9337-4789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02136916$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1343007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Badro, James</creatorcontrib><creatorcontrib>Brodholt, John P.</creatorcontrib><creatorcontrib>Piet, Hélène</creatorcontrib><creatorcontrib>Siebert, Julien</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</description><subject>Astrophysics</subject><subject>core composition</subject><subject>core formation</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth Sciences</subject><subject>earth's accretion</subject><subject>experimental petrology</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Magma</subject><subject>mineral physics</subject><subject>Petrology</subject><subject>Physical Sciences</subject><subject>Sciences of the Universe</subject><subject>Seismology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdktGL1DAQxoMo3rr67JNS9EWE3mWSJm1ehGNRT1jwRcG3kM0m1yxtUpP24P570-26nvcUZvKbL99MBqHXgC8B1_Rq8CpdAsOM1wSAPEErwAJKXgn8FK0wJnXZVKS6QC9SOmCMBWvwc3RBOBWEMbZCvzYhmsKG2KvRBV8ovy_0nNKhH0Jyx6SNoc-JaejMvrg1Qbemd1p1RzrHQ3ufjrEOPo1ROT-ml-iZVV0yr07nGv388vnH5qbcfv_6bXO9LRUHMZZNQxumd9RmN7YWSmtmLNkZTbNVarjClALUyu6NJkIpvuMMbD4szj2Apmv0adEdpl1v9tr4bKCTQ3S9ivcyKCf_v_GulbfhTlYcUwYsC7xbBEIanUzajUa3uRFv9CiBVhTnQa_RxwVqH2nfXG-l82mSmADlAvgdZPjDyVIMvyeTRtm7pE3XKW_ClCTUBFf5acAZff8IPYQp-jywmQJRYUGaTF0tlI4hpWjs2QJgOe-BnPdA_tuDXPH24VTO_N-Pz0BxAubKsxwQWWVJQo_e3izIIY0hPpCoOMuTo38AUJ_DEg</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Badro, James</creator><creator>Brodholt, John P.</creator><creator>Piet, Hélène</creator><creator>Siebert, Julien</creator><creator>Ryerson, Frederick J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9337-4789</orcidid></search><sort><creationdate>20151006</creationdate><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><author>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>core composition</topic><topic>core formation</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth Sciences</topic><topic>earth's accretion</topic><topic>experimental petrology</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Magma</topic><topic>mineral physics</topic><topic>Petrology</topic><topic>Physical Sciences</topic><topic>Sciences of the Universe</topic><topic>Seismology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badro, James</creatorcontrib><creatorcontrib>Brodholt, John P.</creatorcontrib><creatorcontrib>Piet, Hélène</creatorcontrib><creatorcontrib>Siebert, Julien</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badro, James</au><au>Brodholt, John P.</au><au>Piet, Hélène</au><au>Siebert, Julien</au><au>Ryerson, Frederick J.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core formation and core composition from coupled geochemical and geophysical constraints</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12310</spage><epage>12314</epage><pages>12310-12314</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392555</pmid><doi>10.1073/pnas.1505672112</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9337-4789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12310-12314 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_26465351 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Astrophysics core composition core formation Earth and Planetary Astrophysics Earth Sciences earth's accretion experimental petrology Geochemistry Geophysics GEOSCIENCES Magma mineral physics Petrology Physical Sciences Sciences of the Universe Seismology |
title | Core formation and core composition from coupled geochemical and geophysical constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20formation%20and%20core%20composition%20from%20coupled%20geochemical%20and%20geophysical%20constraints&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Badro,%20James&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12310&rft.epage=12314&rft.pages=12310-12314&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1505672112&rft_dat=%3Cjstor_cross%3E26465351%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721940928&rft_id=info:pmid/26392555&rft_jstor_id=26465351&rfr_iscdi=true |