Core formation and core composition from coupled geochemical and geophysical constraints

The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12310-12314
Hauptverfasser: Badro, James, Brodholt, John P., Piet, Hélène, Siebert, Julien, Ryerson, Frederick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12314
container_issue 40
container_start_page 12310
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Badro, James
Brodholt, John P.
Piet, Hélène
Siebert, Julien
Ryerson, Frederick J.
description The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.
doi_str_mv 10.1073/pnas.1505672112
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_26465351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465351</jstor_id><sourcerecordid>26465351</sourcerecordid><originalsourceid>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</originalsourceid><addsrcrecordid>eNpdktGL1DAQxoMo3rr67JNS9EWE3mWSJm1ehGNRT1jwRcG3kM0m1yxtUpP24P570-26nvcUZvKbL99MBqHXgC8B1_Rq8CpdAsOM1wSAPEErwAJKXgn8FK0wJnXZVKS6QC9SOmCMBWvwc3RBOBWEMbZCvzYhmsKG2KvRBV8ovy_0nNKhH0Jyx6SNoc-JaejMvrg1Qbemd1p1RzrHQ3ufjrEOPo1ROT-ml-iZVV0yr07nGv388vnH5qbcfv_6bXO9LRUHMZZNQxumd9RmN7YWSmtmLNkZTbNVarjClALUyu6NJkIpvuMMbD4szj2Apmv0adEdpl1v9tr4bKCTQ3S9ivcyKCf_v_GulbfhTlYcUwYsC7xbBEIanUzajUa3uRFv9CiBVhTnQa_RxwVqH2nfXG-l82mSmADlAvgdZPjDyVIMvyeTRtm7pE3XKW_ClCTUBFf5acAZff8IPYQp-jywmQJRYUGaTF0tlI4hpWjs2QJgOe-BnPdA_tuDXPH24VTO_N-Pz0BxAubKsxwQWWVJQo_e3izIIY0hPpCoOMuTo38AUJ_DEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721940928</pqid></control><display><type>article</type><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J.</creator><creatorcontrib>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1505672112</identifier><identifier>PMID: 26392555</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Astrophysics ; core composition ; core formation ; Earth and Planetary Astrophysics ; Earth Sciences ; earth's accretion ; experimental petrology ; Geochemistry ; Geophysics ; GEOSCIENCES ; Magma ; mineral physics ; Petrology ; Physical Sciences ; Sciences of the Universe ; Seismology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12310-12314</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</citedby><cites>FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</cites><orcidid>0000-0001-9337-4789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02136916$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1343007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Badro, James</creatorcontrib><creatorcontrib>Brodholt, John P.</creatorcontrib><creatorcontrib>Piet, Hélène</creatorcontrib><creatorcontrib>Siebert, Julien</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</description><subject>Astrophysics</subject><subject>core composition</subject><subject>core formation</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth Sciences</subject><subject>earth's accretion</subject><subject>experimental petrology</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Magma</subject><subject>mineral physics</subject><subject>Petrology</subject><subject>Physical Sciences</subject><subject>Sciences of the Universe</subject><subject>Seismology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdktGL1DAQxoMo3rr67JNS9EWE3mWSJm1ehGNRT1jwRcG3kM0m1yxtUpP24P570-26nvcUZvKbL99MBqHXgC8B1_Rq8CpdAsOM1wSAPEErwAJKXgn8FK0wJnXZVKS6QC9SOmCMBWvwc3RBOBWEMbZCvzYhmsKG2KvRBV8ovy_0nNKhH0Jyx6SNoc-JaejMvrg1Qbemd1p1RzrHQ3ufjrEOPo1ROT-ml-iZVV0yr07nGv388vnH5qbcfv_6bXO9LRUHMZZNQxumd9RmN7YWSmtmLNkZTbNVarjClALUyu6NJkIpvuMMbD4szj2Apmv0adEdpl1v9tr4bKCTQ3S9ivcyKCf_v_GulbfhTlYcUwYsC7xbBEIanUzajUa3uRFv9CiBVhTnQa_RxwVqH2nfXG-l82mSmADlAvgdZPjDyVIMvyeTRtm7pE3XKW_ClCTUBFf5acAZff8IPYQp-jywmQJRYUGaTF0tlI4hpWjs2QJgOe-BnPdA_tuDXPH24VTO_N-Pz0BxAubKsxwQWWVJQo_e3izIIY0hPpCoOMuTo38AUJ_DEg</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Badro, James</creator><creator>Brodholt, John P.</creator><creator>Piet, Hélène</creator><creator>Siebert, Julien</creator><creator>Ryerson, Frederick J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9337-4789</orcidid></search><sort><creationdate>20151006</creationdate><title>Core formation and core composition from coupled geochemical and geophysical constraints</title><author>Badro, James ; Brodholt, John P. ; Piet, Hélène ; Siebert, Julien ; Ryerson, Frederick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a619t-88385cb3f555f79acc5ef2bec39583e6a033117afdec29aa6b651fa6bf06391c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>core composition</topic><topic>core formation</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth Sciences</topic><topic>earth's accretion</topic><topic>experimental petrology</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Magma</topic><topic>mineral physics</topic><topic>Petrology</topic><topic>Physical Sciences</topic><topic>Sciences of the Universe</topic><topic>Seismology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badro, James</creatorcontrib><creatorcontrib>Brodholt, John P.</creatorcontrib><creatorcontrib>Piet, Hélène</creatorcontrib><creatorcontrib>Siebert, Julien</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badro, James</au><au>Brodholt, John P.</au><au>Piet, Hélène</au><au>Siebert, Julien</au><au>Ryerson, Frederick J.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core formation and core composition from coupled geochemical and geophysical constraints</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12310</spage><epage>12314</epage><pages>12310-12314</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392555</pmid><doi>10.1073/pnas.1505672112</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9337-4789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12310-12314
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26465351
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Astrophysics
core composition
core formation
Earth and Planetary Astrophysics
Earth Sciences
earth's accretion
experimental petrology
Geochemistry
Geophysics
GEOSCIENCES
Magma
mineral physics
Petrology
Physical Sciences
Sciences of the Universe
Seismology
title Core formation and core composition from coupled geochemical and geophysical constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20formation%20and%20core%20composition%20from%20coupled%20geochemical%20and%20geophysical%20constraints&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Badro,%20James&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12310&rft.epage=12314&rft.pages=12310-12314&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1505672112&rft_dat=%3Cjstor_cross%3E26465351%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721940928&rft_id=info:pmid/26392555&rft_jstor_id=26465351&rfr_iscdi=true