Cold dark matter: Controversies on small scales

The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12249-12255
Hauptverfasser: Weinberg, David H, James S. Bullock, Fabio Governato, Rachel Kuzio de Naray, Annika H. G. Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12255
container_issue 40
container_start_page 12249
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Weinberg, David H
James S. Bullock
Fabio Governato
Rachel Kuzio de Naray
Annika H. G. Peter
description The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.
doi_str_mv 10.1073/pnas.1308716112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_26465341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465341</jstor_id><sourcerecordid>26465341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-dfea65249aa6fbe411d98130ab89dfde1ec1dd3562757b538d13165fbfac7d053</originalsourceid><addsrcrecordid>eNqFks1v1DAQxa0KRLeFc0-USL30ku6Mv2JzQEKrFpAqcYCeLSd2SrZJvNjZSv3vcbTLFrggW5rD_ObpeZ4JOUO4QqjYcjPadIUMVIUSkR6RBYLGUnINL8gCgFal4pQfk5OU1gCghYJX5JgKyeezIMtV6F3hbHwoBjtNPr4vVmGcYnj0MXU-FWEs0mD7vkiN7X16TV62tk_-zb6ekrub6--rz-Xt109fVh9vy0ZonErXeisF5dpa2daeIzqtsk9bK-1a59E36BwTklaiqgVTDhlK0datbSoHgp2SDzvdzbYevGt89mR7s4ndYOOTCbYzf3fG7oe5D4-GS2ACZBa43AvE8HPr02SGLjW-7-3owzYZVFgpqkDT_6MVBS5Qq9nWxT_oOmzjmDcxU6g55Jup5Y5qYkgp-vbgG8HMuZk5N_OcW544__O5B_53UBko9sA8eZBDaniWpHnTGXm7Q9ZpCvFZIs8LxjH33-36rQ3G3scumbtvFFDmbwKYC_sFyMGv7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721940940</pqid></control><display><type>article</type><title>Cold dark matter: Controversies on small scales</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Weinberg, David H ; James S. Bullock ; Fabio Governato ; Rachel Kuzio de Naray ; Annika H. G. Peter</creator><creatorcontrib>Weinberg, David H ; James S. Bullock ; Fabio Governato ; Rachel Kuzio de Naray ; Annika H. G. Peter</creatorcontrib><description>The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1308716112</identifier><identifier>PMID: 25646464</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>cold ; Cosmology ; Dark matter ; Dark Matter Universe: On the Threshold of Discovery Sackler ; galaxy formation ; gravity ; mathematical models ; Milky Way ; Physical Sciences ; prediction ; satellites ; Star &amp; galaxy formation ; streams</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12249-12255</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-dfea65249aa6fbe411d98130ab89dfde1ec1dd3562757b538d13165fbfac7d053</citedby><cites>FETCH-LOGICAL-c591t-dfea65249aa6fbe411d98130ab89dfde1ec1dd3562757b538d13165fbfac7d053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27902,27903,53768,53770,57994,58227</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25646464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, David H</creatorcontrib><creatorcontrib>James S. Bullock</creatorcontrib><creatorcontrib>Fabio Governato</creatorcontrib><creatorcontrib>Rachel Kuzio de Naray</creatorcontrib><creatorcontrib>Annika H. G. Peter</creatorcontrib><title>Cold dark matter: Controversies on small scales</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.</description><subject>cold</subject><subject>Cosmology</subject><subject>Dark matter</subject><subject>Dark Matter Universe: On the Threshold of Discovery Sackler</subject><subject>galaxy formation</subject><subject>gravity</subject><subject>mathematical models</subject><subject>Milky Way</subject><subject>Physical Sciences</subject><subject>prediction</subject><subject>satellites</subject><subject>Star &amp; galaxy formation</subject><subject>streams</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxa0KRLeFc0-USL30ku6Mv2JzQEKrFpAqcYCeLSd2SrZJvNjZSv3vcbTLFrggW5rD_ObpeZ4JOUO4QqjYcjPadIUMVIUSkR6RBYLGUnINL8gCgFal4pQfk5OU1gCghYJX5JgKyeezIMtV6F3hbHwoBjtNPr4vVmGcYnj0MXU-FWEs0mD7vkiN7X16TV62tk_-zb6ekrub6--rz-Xt109fVh9vy0ZonErXeisF5dpa2daeIzqtsk9bK-1a59E36BwTklaiqgVTDhlK0datbSoHgp2SDzvdzbYevGt89mR7s4ndYOOTCbYzf3fG7oe5D4-GS2ACZBa43AvE8HPr02SGLjW-7-3owzYZVFgpqkDT_6MVBS5Qq9nWxT_oOmzjmDcxU6g55Jup5Y5qYkgp-vbgG8HMuZk5N_OcW544__O5B_53UBko9sA8eZBDaniWpHnTGXm7Q9ZpCvFZIs8LxjH33-36rQ3G3scumbtvFFDmbwKYC_sFyMGv7Q</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Weinberg, David H</creator><creator>James S. Bullock</creator><creator>Fabio Governato</creator><creator>Rachel Kuzio de Naray</creator><creator>Annika H. G. Peter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Cold dark matter: Controversies on small scales</title><author>Weinberg, David H ; James S. Bullock ; Fabio Governato ; Rachel Kuzio de Naray ; Annika H. G. Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-dfea65249aa6fbe411d98130ab89dfde1ec1dd3562757b538d13165fbfac7d053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>cold</topic><topic>Cosmology</topic><topic>Dark matter</topic><topic>Dark Matter Universe: On the Threshold of Discovery Sackler</topic><topic>galaxy formation</topic><topic>gravity</topic><topic>mathematical models</topic><topic>Milky Way</topic><topic>Physical Sciences</topic><topic>prediction</topic><topic>satellites</topic><topic>Star &amp; galaxy formation</topic><topic>streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, David H</creatorcontrib><creatorcontrib>James S. Bullock</creatorcontrib><creatorcontrib>Fabio Governato</creatorcontrib><creatorcontrib>Rachel Kuzio de Naray</creatorcontrib><creatorcontrib>Annika H. G. Peter</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, David H</au><au>James S. Bullock</au><au>Fabio Governato</au><au>Rachel Kuzio de Naray</au><au>Annika H. G. Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold dark matter: Controversies on small scales</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12249</spage><epage>12255</epage><pages>12249-12255</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25646464</pmid><doi>10.1073/pnas.1308716112</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12249-12255
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26465341
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects cold
Cosmology
Dark matter
Dark Matter Universe: On the Threshold of Discovery Sackler
galaxy formation
gravity
mathematical models
Milky Way
Physical Sciences
prediction
satellites
Star & galaxy formation
streams
title Cold dark matter: Controversies on small scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20dark%20matter:%20Controversies%20on%20small%20scales&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Weinberg,%20David%20H&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12249&rft.epage=12255&rft.pages=12249-12255&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1308716112&rft_dat=%3Cjstor_proqu%3E26465341%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721940940&rft_id=info:pmid/25646464&rft_jstor_id=26465341&rfr_iscdi=true