Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output

The axon initial segment (AIS) is a structure at the start of the axon with a high density of sodium and potassium channels that defines the site of action potential generation. It has recently been shown that this structure is plastic and can change its position along the axon, as well as its lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (31), p.9757-9762
Hauptverfasser: Wefelmeyer, Winnie, Cattaert, Daniel, Burrone, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9762
container_issue 31
container_start_page 9757
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Wefelmeyer, Winnie
Cattaert, Daniel
Burrone, Juan
description The axon initial segment (AIS) is a structure at the start of the axon with a high density of sodium and potassium channels that defines the site of action potential generation. It has recently been shown that this structure is plastic and can change its position along the axon, as well as its length, in a homeostatic manner. Chronic activity-deprivation paradigms in a chick auditory nucleus lead to a lengthening of the AIS and an increase in neuronal excitability. On the other hand, a long-term increase in activity in dissociated rat hippocampal neurons results in an outward movement of the AIS and a decrease in the cell’s excitability. Here, we investigated whether the AIS is capable of undergoing structural plasticity in rat hippocampal organotypic slices, which retain the diversity of neuronal cell types present at postnatal ages, including chandelier cells. These interneurons exclusively target the AIS of pyramidal neurons and form rows of presynaptic boutons along them. Stimulating individual CA1 pyramidal neurons that express channelrhodopsin-2 for 48 h leads to an outward shift of the AIS. Intriguingly, both the pre- and postsynaptic components of the axo-axonic synapses did not change position after AIS relocation. We used computational modeling to explore the functional consequences of this partial mismatch and found that it allows the GABAergic synapses to strongly oppose action potential generation, and thus downregulate pyramidal cell excitability. We propose that this spatial arrangement is the optimal configuration for a homeostatic response to long-term stimulation.
doi_str_mv 10.1073/pnas.1502902112
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_26464296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464296</jstor_id><sourcerecordid>26464296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-6c7320427c1ee1bde6e659d9c68b00cc66bb541ca5962ecbf529626dd0b912783</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS1ERZfCmRMQiQuXtLbjj_hSqar4qFSJC5wtx5ntepXYwXYK-9_jaJel7YmD5ZHmN08z7yH0huBzgmVzMXmTzgnHVGFKCH2GVgQrUgum8HO0wpjKumWUnaKXKW0xxoq3-AU6pYIsVbNC45XN7t7lXd3DBL4Hn6vRpdFku6k6yL8AfGV-h7o872yVdt5MCVJlfF_lDSw9XznvsjNDleBuXBRs8DmGIVUe5hh86YQ5T3N-hU7WZkjw-vCfoR-fP32__lrffvtyc311W1suRK6FlQ3FjEpLAEjXgwDBVa-saDuMrRWi6zgj1nAlKNhuzWkpRN_jThEq2-YMXe51p7kbobdlp2gGPUU3mrjTwTj9uOPdRt-Fe814wyhlReDjQSCGnzOkrIspFobBeAhz0kQSWTxupfoPFNOSSVmwoB-eoNswx2LPnmolx60o1MWesjGkFGF93JtgvaSul9T1v9TLxLuH5x75vzEX4P0BWCaPcoTqhmgluSzE2z2xTTnEBwpMsGJu8wd81r6s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702875086</pqid></control><display><type>article</type><title>Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Wefelmeyer, Winnie ; Cattaert, Daniel ; Burrone, Juan</creator><creatorcontrib>Wefelmeyer, Winnie ; Cattaert, Daniel ; Burrone, Juan</creatorcontrib><description>The axon initial segment (AIS) is a structure at the start of the axon with a high density of sodium and potassium channels that defines the site of action potential generation. It has recently been shown that this structure is plastic and can change its position along the axon, as well as its length, in a homeostatic manner. Chronic activity-deprivation paradigms in a chick auditory nucleus lead to a lengthening of the AIS and an increase in neuronal excitability. On the other hand, a long-term increase in activity in dissociated rat hippocampal neurons results in an outward movement of the AIS and a decrease in the cell’s excitability. Here, we investigated whether the AIS is capable of undergoing structural plasticity in rat hippocampal organotypic slices, which retain the diversity of neuronal cell types present at postnatal ages, including chandelier cells. These interneurons exclusively target the AIS of pyramidal neurons and form rows of presynaptic boutons along them. Stimulating individual CA1 pyramidal neurons that express channelrhodopsin-2 for 48 h leads to an outward shift of the AIS. Intriguingly, both the pre- and postsynaptic components of the axo-axonic synapses did not change position after AIS relocation. We used computational modeling to explore the functional consequences of this partial mismatch and found that it allows the GABAergic synapses to strongly oppose action potential generation, and thus downregulate pyramidal cell excitability. We propose that this spatial arrangement is the optimal configuration for a homeostatic response to long-term stimulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1502902112</identifier><identifier>PMID: 26195803</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Axons - physiology ; Axons - radiation effects ; Biological Sciences ; Cells ; Channelrhodopsins ; Down-Regulation - radiation effects ; Hippocampus - physiology ; Homeostasis ; Ion Channel Gating - radiation effects ; Light ; Male ; Mice, Transgenic ; Models, Neurological ; Neurons ; Optogenetics ; Potassium ; Pyramidal Cells - physiology ; Pyramidal Cells - radiation effects ; Rats, Sprague-Dawley ; Receptors, GABA-A - metabolism ; Sodium ; Synapses - physiology ; Synapses - radiation effects ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9757-9762</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 4, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-6c7320427c1ee1bde6e659d9c68b00cc66bb541ca5962ecbf529626dd0b912783</citedby><cites>FETCH-LOGICAL-c566t-6c7320427c1ee1bde6e659d9c68b00cc66bb541ca5962ecbf529626dd0b912783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464296$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464296$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wefelmeyer, Winnie</creatorcontrib><creatorcontrib>Cattaert, Daniel</creatorcontrib><creatorcontrib>Burrone, Juan</creatorcontrib><title>Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The axon initial segment (AIS) is a structure at the start of the axon with a high density of sodium and potassium channels that defines the site of action potential generation. It has recently been shown that this structure is plastic and can change its position along the axon, as well as its length, in a homeostatic manner. Chronic activity-deprivation paradigms in a chick auditory nucleus lead to a lengthening of the AIS and an increase in neuronal excitability. On the other hand, a long-term increase in activity in dissociated rat hippocampal neurons results in an outward movement of the AIS and a decrease in the cell’s excitability. Here, we investigated whether the AIS is capable of undergoing structural plasticity in rat hippocampal organotypic slices, which retain the diversity of neuronal cell types present at postnatal ages, including chandelier cells. These interneurons exclusively target the AIS of pyramidal neurons and form rows of presynaptic boutons along them. Stimulating individual CA1 pyramidal neurons that express channelrhodopsin-2 for 48 h leads to an outward shift of the AIS. Intriguingly, both the pre- and postsynaptic components of the axo-axonic synapses did not change position after AIS relocation. We used computational modeling to explore the functional consequences of this partial mismatch and found that it allows the GABAergic synapses to strongly oppose action potential generation, and thus downregulate pyramidal cell excitability. We propose that this spatial arrangement is the optimal configuration for a homeostatic response to long-term stimulation.</description><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - radiation effects</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Channelrhodopsins</subject><subject>Down-Regulation - radiation effects</subject><subject>Hippocampus - physiology</subject><subject>Homeostasis</subject><subject>Ion Channel Gating - radiation effects</subject><subject>Light</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Optogenetics</subject><subject>Potassium</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyramidal Cells - radiation effects</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Sodium</subject><subject>Synapses - physiology</subject><subject>Synapses - radiation effects</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS1ERZfCmRMQiQuXtLbjj_hSqar4qFSJC5wtx5ntepXYwXYK-9_jaJel7YmD5ZHmN08z7yH0huBzgmVzMXmTzgnHVGFKCH2GVgQrUgum8HO0wpjKumWUnaKXKW0xxoq3-AU6pYIsVbNC45XN7t7lXd3DBL4Hn6vRpdFku6k6yL8AfGV-h7o872yVdt5MCVJlfF_lDSw9XznvsjNDleBuXBRs8DmGIVUe5hh86YQ5T3N-hU7WZkjw-vCfoR-fP32__lrffvtyc311W1suRK6FlQ3FjEpLAEjXgwDBVa-saDuMrRWi6zgj1nAlKNhuzWkpRN_jThEq2-YMXe51p7kbobdlp2gGPUU3mrjTwTj9uOPdRt-Fe814wyhlReDjQSCGnzOkrIspFobBeAhz0kQSWTxupfoPFNOSSVmwoB-eoNswx2LPnmolx60o1MWesjGkFGF93JtgvaSul9T1v9TLxLuH5x75vzEX4P0BWCaPcoTqhmgluSzE2z2xTTnEBwpMsGJu8wd81r6s</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Wefelmeyer, Winnie</creator><creator>Cattaert, Daniel</creator><creator>Burrone, Juan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150804</creationdate><title>Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output</title><author>Wefelmeyer, Winnie ; Cattaert, Daniel ; Burrone, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-6c7320427c1ee1bde6e659d9c68b00cc66bb541ca5962ecbf529626dd0b912783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - radiation effects</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Channelrhodopsins</topic><topic>Down-Regulation - radiation effects</topic><topic>Hippocampus - physiology</topic><topic>Homeostasis</topic><topic>Ion Channel Gating - radiation effects</topic><topic>Light</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Optogenetics</topic><topic>Potassium</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyramidal Cells - radiation effects</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Sodium</topic><topic>Synapses - physiology</topic><topic>Synapses - radiation effects</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wefelmeyer, Winnie</creatorcontrib><creatorcontrib>Cattaert, Daniel</creatorcontrib><creatorcontrib>Burrone, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wefelmeyer, Winnie</au><au>Cattaert, Daniel</au><au>Burrone, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>112</volume><issue>31</issue><spage>9757</spage><epage>9762</epage><pages>9757-9762</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The axon initial segment (AIS) is a structure at the start of the axon with a high density of sodium and potassium channels that defines the site of action potential generation. It has recently been shown that this structure is plastic and can change its position along the axon, as well as its length, in a homeostatic manner. Chronic activity-deprivation paradigms in a chick auditory nucleus lead to a lengthening of the AIS and an increase in neuronal excitability. On the other hand, a long-term increase in activity in dissociated rat hippocampal neurons results in an outward movement of the AIS and a decrease in the cell’s excitability. Here, we investigated whether the AIS is capable of undergoing structural plasticity in rat hippocampal organotypic slices, which retain the diversity of neuronal cell types present at postnatal ages, including chandelier cells. These interneurons exclusively target the AIS of pyramidal neurons and form rows of presynaptic boutons along them. Stimulating individual CA1 pyramidal neurons that express channelrhodopsin-2 for 48 h leads to an outward shift of the AIS. Intriguingly, both the pre- and postsynaptic components of the axo-axonic synapses did not change position after AIS relocation. We used computational modeling to explore the functional consequences of this partial mismatch and found that it allows the GABAergic synapses to strongly oppose action potential generation, and thus downregulate pyramidal cell excitability. We propose that this spatial arrangement is the optimal configuration for a homeostatic response to long-term stimulation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26195803</pmid><doi>10.1073/pnas.1502902112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9757-9762
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26464296
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Action Potentials - physiology
Action Potentials - radiation effects
Animals
Axons - physiology
Axons - radiation effects
Biological Sciences
Cells
Channelrhodopsins
Down-Regulation - radiation effects
Hippocampus - physiology
Homeostasis
Ion Channel Gating - radiation effects
Light
Male
Mice, Transgenic
Models, Neurological
Neurons
Optogenetics
Potassium
Pyramidal Cells - physiology
Pyramidal Cells - radiation effects
Rats, Sprague-Dawley
Receptors, GABA-A - metabolism
Sodium
Synapses - physiology
Synapses - radiation effects
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
title Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-dependent%20mismatch%20between%20axo-axonic%20synapses%20and%20the%20axon%20initial%20segment%20controls%20neuronal%20output&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wefelmeyer,%20Winnie&rft.date=2015-08-04&rft.volume=112&rft.issue=31&rft.spage=9757&rft.epage=9762&rft.pages=9757-9762&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1502902112&rft_dat=%3Cjstor_pubme%3E26464296%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702875086&rft_id=info:pmid/26195803&rft_jstor_id=26464296&rfr_iscdi=true