Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome

The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (13), p.4098-4103
Hauptverfasser: Wee, Daniel H., Hughes, Kelly T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4103
container_issue 13
container_start_page 4098
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Wee, Daniel H.
Hughes, Kelly T.
description The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like theSalmonellaflagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26462415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26462415</jstor_id><sourcerecordid>26462415</sourcerecordid><originalsourceid>FETCH-jstor_primary_264624153</originalsourceid><addsrcrecordid>eNqFybsKwjAUANAgCtbHJwj5gcBtTGs7iyKIk-4ltLc25SYpSTr49y7uTmc4C5blUOeiVDUsWQYgT6JSUq3ZJsYRAOqigozdH56wnUkHHmbCwDtMGKxxGLlD7Ag5oXungfc-8DTgU5P1Don0czIi58aN2CYTvcUdW_WaIu5_btnhenmdb2KMyYdmCsbq8GlkqUqp8uL4779T2zqK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wee, Daniel H. ; Hughes, Kelly T.</creator><creatorcontrib>Wee, Daniel H. ; Hughes, Kelly T.</creatorcontrib><description>The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like theSalmonellaflagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4098-4103</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26462415$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26462415$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58016,58249</link.rule.ids></links><search><creatorcontrib>Wee, Daniel H.</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><title>Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like theSalmonellaflagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.</description><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFybsKwjAUANAgCtbHJwj5gcBtTGs7iyKIk-4ltLc25SYpSTr49y7uTmc4C5blUOeiVDUsWQYgT6JSUq3ZJsYRAOqigozdH56wnUkHHmbCwDtMGKxxGLlD7Ag5oXungfc-8DTgU5P1Don0czIi58aN2CYTvcUdW_WaIu5_btnhenmdb2KMyYdmCsbq8GlkqUqp8uL4779T2zqK</recordid><startdate>20150331</startdate><enddate>20150331</enddate><creator>Wee, Daniel H.</creator><creator>Hughes, Kelly T.</creator><general>National Academy of Sciences</general><scope/></search><sort><creationdate>20150331</creationdate><title>Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome</title><author>Wee, Daniel H. ; Hughes, Kelly T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_264624153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wee, Daniel H.</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wee, Daniel H.</au><au>Hughes, Kelly T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2015-03-31</date><risdate>2015</risdate><volume>112</volume><issue>13</issue><spage>4098</spage><epage>4103</epage><pages>4098-4103</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like theSalmonellaflagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.</abstract><pub>National Academy of Sciences</pub></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4098-4103
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26462415
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Molecular ruler determines needle length for theSalmonellaSpi-1 injectisome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20ruler%20determines%20needle%20length%20for%20theSalmonellaSpi-1%20injectisome&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wee,%20Daniel%20H.&rft.date=2015-03-31&rft.volume=112&rft.issue=13&rft.spage=4098&rft.epage=4103&rft.pages=4098-4103&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Cjstor%3E26462415%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26462415&rfr_iscdi=true