Understanding the Impact of Socioeconomic Factors on Navy Accessions

Navy Recruiting Command (NRC) must efficiently allocate its primary recruiting resource, recruiters, to areas with the greatest potential for generating recruits to improve Navy enlisted accessions in a fiscally constrained environment. Our research builds on work in this area and makes use of open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Military operations research (Alexandria, Va.) Va.), 2018-01, Vol.23 (1), p.31-48
Hauptverfasser: Intrater, Bradley C., Alt, Jonathan K., Buttrey, Samuel E., House, Jeffrey B., Evans, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 31
container_title Military operations research (Alexandria, Va.)
container_volume 23
creator Intrater, Bradley C.
Alt, Jonathan K.
Buttrey, Samuel E.
House, Jeffrey B.
Evans, Michael
description Navy Recruiting Command (NRC) must efficiently allocate its primary recruiting resource, recruiters, to areas with the greatest potential for generating recruits to improve Navy enlisted accessions in a fiscally constrained environment. Our research builds on work in this area and makes use of open source socioeconomic data sets, including from the Internal Revenue Service (IRS) and the Federal Bureau of Investigation (FBI). Beginning with a response variable of annual Navy accessions and a set of 71 explanatory variables populated from zip code-level data, we fit and validate multiple linear regression models for data at the station level and a zero-inflated negative binomial (ZINB) regression model for data at the zip code level. We identify the average number of recruiters, adjusted gross income, and total veterans as the principal drivers of accession production at the station level. We test each model with out-of-sample data. We observe improved prediction rates compared to previous zero-inflated Poisson models using similar recruiting data.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26373800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26373800</jstor_id><sourcerecordid>26373800</sourcerecordid><originalsourceid>FETCH-jstor_primary_263738003</originalsourceid><addsrcrecordid>eNqFi7EKwjAURYMoWLSfILwfKKQJbdNR1KKLizqXkKaaYvNKXhH693Zw9y4HzuEuWCTSXCaiyNSSRSlXIslKJdcsJur4vKwoSykidnz4xgYatW-cf8L4snDpB21GwBZuaBxagx57Z6CaLQYC9HDVnwn2xlgih562bNXqN9n4xw3bVaf74Zx0ND_qIbheh6kWuSyk4lz-61_V0DgZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Impact of Socioeconomic Factors on Navy Accessions</title><source>Jstor Complete Legacy</source><creator>Intrater, Bradley C. ; Alt, Jonathan K. ; Buttrey, Samuel E. ; House, Jeffrey B. ; Evans, Michael</creator><creatorcontrib>Intrater, Bradley C. ; Alt, Jonathan K. ; Buttrey, Samuel E. ; House, Jeffrey B. ; Evans, Michael</creatorcontrib><description>Navy Recruiting Command (NRC) must efficiently allocate its primary recruiting resource, recruiters, to areas with the greatest potential for generating recruits to improve Navy enlisted accessions in a fiscally constrained environment. Our research builds on work in this area and makes use of open source socioeconomic data sets, including from the Internal Revenue Service (IRS) and the Federal Bureau of Investigation (FBI). Beginning with a response variable of annual Navy accessions and a set of 71 explanatory variables populated from zip code-level data, we fit and validate multiple linear regression models for data at the station level and a zero-inflated negative binomial (ZINB) regression model for data at the zip code level. We identify the average number of recruiters, adjusted gross income, and total veterans as the principal drivers of accession production at the station level. We test each model with out-of-sample data. We observe improved prediction rates compared to previous zero-inflated Poisson models using similar recruiting data.</description><identifier>ISSN: 1082-5983</identifier><identifier>EISSN: 2163-2758</identifier><language>eng</language><publisher>Military Operations Research Society</publisher><subject>Adusted gross income ; Military recruitment ; Modeling ; Navies ; Research universities ; Socioeconomics ; Universities ; Veterans ; Zero ; ZIP codes</subject><ispartof>Military operations research (Alexandria, Va.), 2018-01, Vol.23 (1), p.31-48</ispartof><rights>Copyright 2018, Military Operations Research Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26373800$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26373800$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57992,58225</link.rule.ids></links><search><creatorcontrib>Intrater, Bradley C.</creatorcontrib><creatorcontrib>Alt, Jonathan K.</creatorcontrib><creatorcontrib>Buttrey, Samuel E.</creatorcontrib><creatorcontrib>House, Jeffrey B.</creatorcontrib><creatorcontrib>Evans, Michael</creatorcontrib><title>Understanding the Impact of Socioeconomic Factors on Navy Accessions</title><title>Military operations research (Alexandria, Va.)</title><description>Navy Recruiting Command (NRC) must efficiently allocate its primary recruiting resource, recruiters, to areas with the greatest potential for generating recruits to improve Navy enlisted accessions in a fiscally constrained environment. Our research builds on work in this area and makes use of open source socioeconomic data sets, including from the Internal Revenue Service (IRS) and the Federal Bureau of Investigation (FBI). Beginning with a response variable of annual Navy accessions and a set of 71 explanatory variables populated from zip code-level data, we fit and validate multiple linear regression models for data at the station level and a zero-inflated negative binomial (ZINB) regression model for data at the zip code level. We identify the average number of recruiters, adjusted gross income, and total veterans as the principal drivers of accession production at the station level. We test each model with out-of-sample data. We observe improved prediction rates compared to previous zero-inflated Poisson models using similar recruiting data.</description><subject>Adusted gross income</subject><subject>Military recruitment</subject><subject>Modeling</subject><subject>Navies</subject><subject>Research universities</subject><subject>Socioeconomics</subject><subject>Universities</subject><subject>Veterans</subject><subject>Zero</subject><subject>ZIP codes</subject><issn>1082-5983</issn><issn>2163-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFi7EKwjAURYMoWLSfILwfKKQJbdNR1KKLizqXkKaaYvNKXhH693Zw9y4HzuEuWCTSXCaiyNSSRSlXIslKJdcsJur4vKwoSykidnz4xgYatW-cf8L4snDpB21GwBZuaBxagx57Z6CaLQYC9HDVnwn2xlgih562bNXqN9n4xw3bVaf74Zx0ND_qIbheh6kWuSyk4lz-61_V0DgZ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Intrater, Bradley C.</creator><creator>Alt, Jonathan K.</creator><creator>Buttrey, Samuel E.</creator><creator>House, Jeffrey B.</creator><creator>Evans, Michael</creator><general>Military Operations Research Society</general><scope/></search><sort><creationdate>20180101</creationdate><title>Understanding the Impact of Socioeconomic Factors on Navy Accessions</title><author>Intrater, Bradley C. ; Alt, Jonathan K. ; Buttrey, Samuel E. ; House, Jeffrey B. ; Evans, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_263738003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adusted gross income</topic><topic>Military recruitment</topic><topic>Modeling</topic><topic>Navies</topic><topic>Research universities</topic><topic>Socioeconomics</topic><topic>Universities</topic><topic>Veterans</topic><topic>Zero</topic><topic>ZIP codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Intrater, Bradley C.</creatorcontrib><creatorcontrib>Alt, Jonathan K.</creatorcontrib><creatorcontrib>Buttrey, Samuel E.</creatorcontrib><creatorcontrib>House, Jeffrey B.</creatorcontrib><creatorcontrib>Evans, Michael</creatorcontrib><jtitle>Military operations research (Alexandria, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Intrater, Bradley C.</au><au>Alt, Jonathan K.</au><au>Buttrey, Samuel E.</au><au>House, Jeffrey B.</au><au>Evans, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Impact of Socioeconomic Factors on Navy Accessions</atitle><jtitle>Military operations research (Alexandria, Va.)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>23</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>1082-5983</issn><eissn>2163-2758</eissn><abstract>Navy Recruiting Command (NRC) must efficiently allocate its primary recruiting resource, recruiters, to areas with the greatest potential for generating recruits to improve Navy enlisted accessions in a fiscally constrained environment. Our research builds on work in this area and makes use of open source socioeconomic data sets, including from the Internal Revenue Service (IRS) and the Federal Bureau of Investigation (FBI). Beginning with a response variable of annual Navy accessions and a set of 71 explanatory variables populated from zip code-level data, we fit and validate multiple linear regression models for data at the station level and a zero-inflated negative binomial (ZINB) regression model for data at the zip code level. We identify the average number of recruiters, adjusted gross income, and total veterans as the principal drivers of accession production at the station level. We test each model with out-of-sample data. We observe improved prediction rates compared to previous zero-inflated Poisson models using similar recruiting data.</abstract><pub>Military Operations Research Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1082-5983
ispartof Military operations research (Alexandria, Va.), 2018-01, Vol.23 (1), p.31-48
issn 1082-5983
2163-2758
language eng
recordid cdi_jstor_primary_26373800
source Jstor Complete Legacy
subjects Adusted gross income
Military recruitment
Modeling
Navies
Research universities
Socioeconomics
Universities
Veterans
Zero
ZIP codes
title Understanding the Impact of Socioeconomic Factors on Navy Accessions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Impact%20of%20Socioeconomic%20Factors%20on%20Navy%20Accessions&rft.jtitle=Military%20operations%20research%20(Alexandria,%20Va.)&rft.au=Intrater,%20Bradley%20C.&rft.date=2018-01-01&rft.volume=23&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=1082-5983&rft.eissn=2163-2758&rft_id=info:doi/&rft_dat=%3Cjstor%3E26373800%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26373800&rfr_iscdi=true