Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension
Let ℓ be an odd prime number. LetK/ℚ be a real cyclic extension of degree ℓ,AK the 2-part of the ideal class group ofK, andH/Kthe class field corresponding to A K / A K 2 . LetKn be thenth layer of the cyclotomic ℤ₂-extension overK. We consider the questions (Q1) “doesH/Khas a normal integral basis?...
Gespeichert in:
Veröffentlicht in: | Journal de theorie des nombres de bordeaux 2016-01, Vol.28 (2), p.325-345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 2 |
container_start_page | 325 |
container_title | Journal de theorie des nombres de bordeaux |
container_volume | 28 |
creator | ICHIMURA, Humio SUMIDA-TAKAHASHI, Hiroki |
description | Let ℓ be an odd prime number. LetK/ℚ be a real cyclic extension of degree ℓ,AK
the 2-part of the ideal class group ofK, andH/Kthe class field corresponding to
A
K
/
A
K
2
. LetKn
be thenth layer of the cyclotomic ℤ₂-extension overK. We consider the questions (Q1) “doesH/Khas a normal integral basis?”, and (Q2) “if not, does the pushed-up extensionHKn/Kn
has a normal integral basis for somen≥ 1?” Under some assumptions on ℓ andK, we answer these questions in terms of the 2-adicL-function associated to the base fieldK. We also give some numerical examples. |
doi_str_mv | 10.5802/jtnb.942 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26274035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26274035</jstor_id><sourcerecordid>26274035</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-fd1721eabb508968f801130cfeee5b43de91c906b44ba7753f2c0743fad28bc63</originalsourceid><addsrcrecordid>eNo9j01KAzEAhYMoWKvgBYRcIDW_k8xSin9QdKNLKUkmkQwziSap2G3xKJ6sJ3FAcfUefI8PHgDnBC-EwvSyr9EsWk4PwIwSopASkh6CGaG8QZJjcQxOSukxpqxp1Qy8PKQ86gGGWN1rnorRJRSYPNQRbmLWY_DBdfB9o7usa7DQfVYXS0gRpg-XoYZ2a4dU0zix_df3frdD_5NTcOT1UNzZX87B88310_IOrR5v75dXK9QTKSvyHZGUOG2MwKptlFeYEIatd84Jw1nnWmJb3BjOjZZSME8tlpx53VFlbMPm4OLX25ea8voth1Hn7Zo2dLrMBPsB8iJVdA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ICHIMURA, Humio ; SUMIDA-TAKAHASHI, Hiroki</creator><creatorcontrib>ICHIMURA, Humio ; SUMIDA-TAKAHASHI, Hiroki</creatorcontrib><description>Let ℓ be an odd prime number. LetK/ℚ be a real cyclic extension of degree ℓ,AK
the 2-part of the ideal class group ofK, andH/Kthe class field corresponding to
A
K
/
A
K
2
. LetKn
be thenth layer of the cyclotomic ℤ₂-extension overK. We consider the questions (Q1) “doesH/Khas a normal integral basis?”, and (Q2) “if not, does the pushed-up extensionHKn/Kn
has a normal integral basis for somen≥ 1?” Under some assumptions on ℓ andK, we answer these questions in terms of the 2-adicL-function associated to the base fieldK. We also give some numerical examples.</description><identifier>ISSN: 1246-7405</identifier><identifier>EISSN: 2118-8572</identifier><identifier>DOI: 10.5802/jtnb.942</identifier><language>eng</language><publisher>cedram</publisher><subject>Algebra ; Integers ; Mathematical congruence ; Mathematical integrals ; Mathematical rings ; Numbers ; Polynomials ; Power series ; Prime numbers</subject><ispartof>Journal de theorie des nombres de bordeaux, 2016-01, Vol.28 (2), p.325-345</ispartof><rights>Société Arithmétique de Bordeaux, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26274035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26274035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>ICHIMURA, Humio</creatorcontrib><creatorcontrib>SUMIDA-TAKAHASHI, Hiroki</creatorcontrib><title>Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension</title><title>Journal de theorie des nombres de bordeaux</title><description>Let ℓ be an odd prime number. LetK/ℚ be a real cyclic extension of degree ℓ,AK
the 2-part of the ideal class group ofK, andH/Kthe class field corresponding to
A
K
/
A
K
2
. LetKn
be thenth layer of the cyclotomic ℤ₂-extension overK. We consider the questions (Q1) “doesH/Khas a normal integral basis?”, and (Q2) “if not, does the pushed-up extensionHKn/Kn
has a normal integral basis for somen≥ 1?” Under some assumptions on ℓ andK, we answer these questions in terms of the 2-adicL-function associated to the base fieldK. We also give some numerical examples.</description><subject>Algebra</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical integrals</subject><subject>Mathematical rings</subject><subject>Numbers</subject><subject>Polynomials</subject><subject>Power series</subject><subject>Prime numbers</subject><issn>1246-7405</issn><issn>2118-8572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9j01KAzEAhYMoWKvgBYRcIDW_k8xSin9QdKNLKUkmkQwziSap2G3xKJ6sJ3FAcfUefI8PHgDnBC-EwvSyr9EsWk4PwIwSopASkh6CGaG8QZJjcQxOSukxpqxp1Qy8PKQ86gGGWN1rnorRJRSYPNQRbmLWY_DBdfB9o7usa7DQfVYXS0gRpg-XoYZ2a4dU0zix_df3frdD_5NTcOT1UNzZX87B88310_IOrR5v75dXK9QTKSvyHZGUOG2MwKptlFeYEIatd84Jw1nnWmJb3BjOjZZSME8tlpx53VFlbMPm4OLX25ea8voth1Hn7Zo2dLrMBPsB8iJVdA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>ICHIMURA, Humio</creator><creator>SUMIDA-TAKAHASHI, Hiroki</creator><general>cedram</general><scope/></search><sort><creationdate>20160101</creationdate><title>Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension</title><author>ICHIMURA, Humio ; SUMIDA-TAKAHASHI, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-fd1721eabb508968f801130cfeee5b43de91c906b44ba7753f2c0743fad28bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical integrals</topic><topic>Mathematical rings</topic><topic>Numbers</topic><topic>Polynomials</topic><topic>Power series</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ICHIMURA, Humio</creatorcontrib><creatorcontrib>SUMIDA-TAKAHASHI, Hiroki</creatorcontrib><jtitle>Journal de theorie des nombres de bordeaux</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ICHIMURA, Humio</au><au>SUMIDA-TAKAHASHI, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension</atitle><jtitle>Journal de theorie des nombres de bordeaux</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>28</volume><issue>2</issue><spage>325</spage><epage>345</epage><pages>325-345</pages><issn>1246-7405</issn><eissn>2118-8572</eissn><abstract>Let ℓ be an odd prime number. LetK/ℚ be a real cyclic extension of degree ℓ,AK
the 2-part of the ideal class group ofK, andH/Kthe class field corresponding to
A
K
/
A
K
2
. LetKn
be thenth layer of the cyclotomic ℤ₂-extension overK. We consider the questions (Q1) “doesH/Khas a normal integral basis?”, and (Q2) “if not, does the pushed-up extensionHKn/Kn
has a normal integral basis for somen≥ 1?” Under some assumptions on ℓ andK, we answer these questions in terms of the 2-adicL-function associated to the base fieldK. We also give some numerical examples.</abstract><pub>cedram</pub><doi>10.5802/jtnb.942</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1246-7405 |
ispartof | Journal de theorie des nombres de bordeaux, 2016-01, Vol.28 (2), p.325-345 |
issn | 1246-7405 2118-8572 |
language | eng |
recordid | cdi_jstor_primary_26274035 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Integers Mathematical congruence Mathematical integrals Mathematical rings Numbers Polynomials Power series Prime numbers |
title | Normal integral basis of an unramified quadratic extension over a cyclotomic ℤ₂-extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20integral%20basis%20of%20an%20unramified%20quadratic%20extension%20over%20a%20cyclotomic%20%E2%84%A4%E2%82%82-extension&rft.jtitle=Journal%20de%20theorie%20des%20nombres%20de%20bordeaux&rft.au=ICHIMURA,%20Humio&rft.date=2016-01-01&rft.volume=28&rft.issue=2&rft.spage=325&rft.epage=345&rft.pages=325-345&rft.issn=1246-7405&rft.eissn=2118-8572&rft_id=info:doi/10.5802/jtnb.942&rft_dat=%3Cjstor%3E26274035%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26274035&rfr_iscdi=true |