Dynamic Programming Approximations for a Stochastic Inventory Routing Problem
This work is motivated by the need to solve the inventory routing problem when implementing a business practice called vendor managed inventory replenishment (VMI). With VMI, vendors monitor their customers' inventories and decide when and how much inventory should be replenished at each custom...
Gespeichert in:
Veröffentlicht in: | Transportation science 2004-02, Vol.38 (1), p.42-70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Transportation science |
container_volume | 38 |
creator | Kleywegt, Anton J Nori, Vijay S Savelsbergh, Martin W. P |
description | This work is motivated by the need to solve the inventory routing problem when implementing a business practice called vendor managed inventory replenishment (VMI). With VMI, vendors monitor their customers' inventories and decide when and how much inventory should be replenished at each customer. The inventory routing problem attempts to coordinate inventory replenishment and transportation in such a way that the cost is minimized over the long run. We formulate a Markov decision process model of the stochastic inventory routing problem and propose approximation methods to find good solutions with reasonable computational effort. We indicate how the proposed approach can be used for other Markov decision processes involving the control of multiple resources. |
doi_str_mv | 10.1287/trsc.1030.0041 |
format | Article |
fullrecord | <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_jstor_primary_25769177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A114253035</galeid><jstor_id>25769177</jstor_id><sourcerecordid>A114253035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-a6467e9ea298e29f1c02e71aa91eb40852d4affde5470c12f493027ea5fc48ed3</originalsourceid><addsrcrecordid>eNqFkd2LEzEUxYMoWKuvvgmDoD5Nzc3HZOax7Lq6sKL48Ryy6U2bMpPUZKrb_94Ms7gg4pKHwM3vJOfkEPIc6ApYq96OKdsVUE5XlAp4QBYgWVNLIdRDsphGNTRSPiZPct5TClKBXJCP56dgBm-rzylukxkGH7bV-nBI8cYPZvQx5MrFVJnq6xjtzuSxsJfhJ4YxplP1JR7HSVHU1z0OT8kjZ_qMz273Jfl-8e7b2Yf66tP7y7P1VW1lB2NtGtEo7NCwrkXWObCUoQJjOsBrQVvJNsI4t0EpFLXAnOg4ZQqNdFa0uOFL8nq-t_j8ccQ86sFni31vAsZj1ly1qhEC7gVZC8C4aAv48i9wH48plBCaUS5501FeoHqGtqZH7YOLYzJ2iwGT6WNA58t4DSCY5JNoSVb_4MvaYPny_wlsijkndPqQSg3ppIHqqWQ9laynkvXUaBG8urVtsjW9SyZYn-9UUnSl5ol7MXP7XHr7c86kajpQ6i7ZZDIN-f5338z8zm93v3ya003CkjBk6zVvNWjB-G_p-s0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203536903</pqid></control><display><type>article</type><title>Dynamic Programming Approximations for a Stochastic Inventory Routing Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Kleywegt, Anton J ; Nori, Vijay S ; Savelsbergh, Martin W. P</creator><creatorcontrib>Kleywegt, Anton J ; Nori, Vijay S ; Savelsbergh, Martin W. P</creatorcontrib><description>This work is motivated by the need to solve the inventory routing problem when implementing a business practice called vendor managed inventory replenishment (VMI). With VMI, vendors monitor their customers' inventories and decide when and how much inventory should be replenished at each customer. The inventory routing problem attempts to coordinate inventory replenishment and transportation in such a way that the cost is minimized over the long run. We formulate a Markov decision process model of the stochastic inventory routing problem and propose approximation methods to find good solutions with reasonable computational effort. We indicate how the proposed approach can be used for other Markov decision processes involving the control of multiple resources.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.1030.0041</identifier><identifier>CODEN: TRSCBJ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Dynamic programming ; Exact sciences and technology ; Freight markets ; freight transportation ; Ground, air and sea transportation, marine construction ; Heuristics ; Inventories ; logistics ; Markov processes ; Markovian processes ; Operations research ; Research methods ; stochastic inventory routing ; Supply-side economics ; Transport ; Transportation ; Transportation planning, management and economics ; Vehicle capacity ; Vehicles ; Vendors</subject><ispartof>Transportation science, 2004-02, Vol.38 (1), p.42-70</ispartof><rights>Copyright © 2004 Institute for Operations Research and the Management Sciences</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Feb 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-a6467e9ea298e29f1c02e71aa91eb40852d4affde5470c12f493027ea5fc48ed3</citedby><cites>FETCH-LOGICAL-c591t-a6467e9ea298e29f1c02e71aa91eb40852d4affde5470c12f493027ea5fc48ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25769177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.1030.0041$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15497151$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kleywegt, Anton J</creatorcontrib><creatorcontrib>Nori, Vijay S</creatorcontrib><creatorcontrib>Savelsbergh, Martin W. P</creatorcontrib><title>Dynamic Programming Approximations for a Stochastic Inventory Routing Problem</title><title>Transportation science</title><description>This work is motivated by the need to solve the inventory routing problem when implementing a business practice called vendor managed inventory replenishment (VMI). With VMI, vendors monitor their customers' inventories and decide when and how much inventory should be replenished at each customer. The inventory routing problem attempts to coordinate inventory replenishment and transportation in such a way that the cost is minimized over the long run. We formulate a Markov decision process model of the stochastic inventory routing problem and propose approximation methods to find good solutions with reasonable computational effort. We indicate how the proposed approach can be used for other Markov decision processes involving the control of multiple resources.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Freight markets</subject><subject>freight transportation</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Heuristics</subject><subject>Inventories</subject><subject>logistics</subject><subject>Markov processes</subject><subject>Markovian processes</subject><subject>Operations research</subject><subject>Research methods</subject><subject>stochastic inventory routing</subject><subject>Supply-side economics</subject><subject>Transport</subject><subject>Transportation</subject><subject>Transportation planning, management and economics</subject><subject>Vehicle capacity</subject><subject>Vehicles</subject><subject>Vendors</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkd2LEzEUxYMoWKuvvgmDoD5Nzc3HZOax7Lq6sKL48Ryy6U2bMpPUZKrb_94Ms7gg4pKHwM3vJOfkEPIc6ApYq96OKdsVUE5XlAp4QBYgWVNLIdRDsphGNTRSPiZPct5TClKBXJCP56dgBm-rzylukxkGH7bV-nBI8cYPZvQx5MrFVJnq6xjtzuSxsJfhJ4YxplP1JR7HSVHU1z0OT8kjZ_qMz273Jfl-8e7b2Yf66tP7y7P1VW1lB2NtGtEo7NCwrkXWObCUoQJjOsBrQVvJNsI4t0EpFLXAnOg4ZQqNdFa0uOFL8nq-t_j8ccQ86sFni31vAsZj1ly1qhEC7gVZC8C4aAv48i9wH48plBCaUS5501FeoHqGtqZH7YOLYzJ2iwGT6WNA58t4DSCY5JNoSVb_4MvaYPny_wlsijkndPqQSg3ppIHqqWQ9laynkvXUaBG8urVtsjW9SyZYn-9UUnSl5ol7MXP7XHr7c86kajpQ6i7ZZDIN-f5338z8zm93v3ya003CkjBk6zVvNWjB-G_p-s0k</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Kleywegt, Anton J</creator><creator>Nori, Vijay S</creator><creator>Savelsbergh, Martin W. P</creator><general>INFORMS</general><general>Transportation Science Section of the Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040201</creationdate><title>Dynamic Programming Approximations for a Stochastic Inventory Routing Problem</title><author>Kleywegt, Anton J ; Nori, Vijay S ; Savelsbergh, Martin W. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-a6467e9ea298e29f1c02e71aa91eb40852d4affde5470c12f493027ea5fc48ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Freight markets</topic><topic>freight transportation</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Heuristics</topic><topic>Inventories</topic><topic>logistics</topic><topic>Markov processes</topic><topic>Markovian processes</topic><topic>Operations research</topic><topic>Research methods</topic><topic>stochastic inventory routing</topic><topic>Supply-side economics</topic><topic>Transport</topic><topic>Transportation</topic><topic>Transportation planning, management and economics</topic><topic>Vehicle capacity</topic><topic>Vehicles</topic><topic>Vendors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleywegt, Anton J</creatorcontrib><creatorcontrib>Nori, Vijay S</creatorcontrib><creatorcontrib>Savelsbergh, Martin W. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleywegt, Anton J</au><au>Nori, Vijay S</au><au>Savelsbergh, Martin W. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Programming Approximations for a Stochastic Inventory Routing Problem</atitle><jtitle>Transportation science</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>38</volume><issue>1</issue><spage>42</spage><epage>70</epage><pages>42-70</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><coden>TRSCBJ</coden><abstract>This work is motivated by the need to solve the inventory routing problem when implementing a business practice called vendor managed inventory replenishment (VMI). With VMI, vendors monitor their customers' inventories and decide when and how much inventory should be replenished at each customer. The inventory routing problem attempts to coordinate inventory replenishment and transportation in such a way that the cost is minimized over the long run. We formulate a Markov decision process model of the stochastic inventory routing problem and propose approximation methods to find good solutions with reasonable computational effort. We indicate how the proposed approach can be used for other Markov decision processes involving the control of multiple resources.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/trsc.1030.0041</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-1655 |
ispartof | Transportation science, 2004-02, Vol.38 (1), p.42-70 |
issn | 0041-1655 1526-5447 |
language | eng |
recordid | cdi_jstor_primary_25769177 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Applied sciences Approximation Dynamic programming Exact sciences and technology Freight markets freight transportation Ground, air and sea transportation, marine construction Heuristics Inventories logistics Markov processes Markovian processes Operations research Research methods stochastic inventory routing Supply-side economics Transport Transportation Transportation planning, management and economics Vehicle capacity Vehicles Vendors |
title | Dynamic Programming Approximations for a Stochastic Inventory Routing Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Programming%20Approximations%20for%20a%20Stochastic%20Inventory%20Routing%20Problem&rft.jtitle=Transportation%20science&rft.au=Kleywegt,%20Anton%20J&rft.date=2004-02-01&rft.volume=38&rft.issue=1&rft.spage=42&rft.epage=70&rft.pages=42-70&rft.issn=0041-1655&rft.eissn=1526-5447&rft.coden=TRSCBJ&rft_id=info:doi/10.1287/trsc.1030.0041&rft_dat=%3Cgale_jstor%3EA114253035%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203536903&rft_id=info:pmid/&rft_galeid=A114253035&rft_jstor_id=25769177&rfr_iscdi=true |