Recruitment facilitation can drive alternative states on temperate reefs

How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2010-06, Vol.91 (6), p.1763-1773
Hauptverfasser: Baskett, Marissa L, Salomon, Anne K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1773
container_issue 6
container_start_page 1763
container_title Ecology (Durham)
container_volume 91
creator Baskett, Marissa L
Salomon, Anne K
description How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.
doi_str_mv 10.1890/09-0515.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25680416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25680416</jstor_id><sourcerecordid>25680416</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5593-c55a3619691831c475ec32c9d4706c189debfe5e0a5a0dc4c9af1ab32e477dc33</originalsourceid><addsrcrecordid>eNqFkt-L1DAQx4Mo3t7pg3-AWhQRH3rONE3SPMpyesKBoN6DT2E2nUqXbrsmrbL__aV29UAU85If88n3m5mJEI8QzrGy8BpsDgrVOd4RK7TS5hYN3BUrACxyq1V1Ik5j3EIaWFb3xUkBqpIGzUpcfmQfpnbccT9mDfm2a0ca26HPPPVZHdrvnFE3cujTaVrHFOWYpfjIuz2HtMsCcxMfiHsNdZEfHuczcf324vP6Mr_68O79-s1VTkpZmXulSGq02mIl0ZdGsZeFt3VpQPuUTc2bhhUDKYLal95Sg7SRBZfG1F7KM_Fy0d2H4dvEcXS7NnruOup5mKIzpZZQKav_T0pZGo26SuSzP8jtMKWMu-ik1ga11LPxqwXyYYgxcOP2od1RODgEN7fBgXVzGxwm9slRcNrsuP5N_qp7Al4cAYqeuiZQ79t4yxUWsCogcWrhfrQdH_7t6C7WXwpAsKjR_Hzs4-XeNo5DuNVVuoIS59o8XeINDY6-huR9_SkJ6PRDrLF6dn6-EDQe9kPvONJfEr0BG-i6dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>366716363</pqid></control><display><type>article</type><title>Recruitment facilitation can drive alternative states on temperate reefs</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Online Library All Journals</source><creator>Baskett, Marissa L ; Salomon, Anne K</creator><creatorcontrib>Baskett, Marissa L ; Salomon, Anne K</creatorcontrib><description>How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/09-0515.1</identifier><identifier>PMID: 20583717</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Algae ; alternative states ; Animal and plant ecology ; Animal behavior ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; Climate ; community structure ; crustose coralline algae ; Echinodermata ; Echinoidea ; Ecological balance ; Ecological competition ; Ecology ; Ecosystem ; Eukaryota - physiology ; Evolution ; Feeding Behavior ; Fundamental and applied biological sciences. Psychology ; General aspects ; grazing ; harvesting ; Herbivores ; herbivory ; hysteresis ; Invertebrates ; kelp forest ; Macroalgae ; Marine ; Marine ecology ; Models, Biological ; Mortality ; Population Dynamics ; Predation ; predators ; recruitment facilitation ; reefs ; resilience ; Sea urchins ; Sea Urchins - physiology ; storms ; Synecology ; urchin barren</subject><ispartof>Ecology (Durham), 2010-06, Vol.91 (6), p.1763-1773</ispartof><rights>Ecological Society of America</rights><rights>Copyright © 2010 Ecological Society of America</rights><rights>2010 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5593-c55a3619691831c475ec32c9d4706c189debfe5e0a5a0dc4c9af1ab32e477dc33</citedby><cites>FETCH-LOGICAL-a5593-c55a3619691831c475ec32c9d4706c189debfe5e0a5a0dc4c9af1ab32e477dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25680416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25680416$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27923,27924,45573,45574,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22901820$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20583717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baskett, Marissa L</creatorcontrib><creatorcontrib>Salomon, Anne K</creatorcontrib><title>Recruitment facilitation can drive alternative states on temperate reefs</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.</description><subject>Algae</subject><subject>alternative states</subject><subject>Animal and plant ecology</subject><subject>Animal behavior</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Climate</subject><subject>community structure</subject><subject>crustose coralline algae</subject><subject>Echinodermata</subject><subject>Echinoidea</subject><subject>Ecological balance</subject><subject>Ecological competition</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Eukaryota - physiology</subject><subject>Evolution</subject><subject>Feeding Behavior</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>grazing</subject><subject>harvesting</subject><subject>Herbivores</subject><subject>herbivory</subject><subject>hysteresis</subject><subject>Invertebrates</subject><subject>kelp forest</subject><subject>Macroalgae</subject><subject>Marine</subject><subject>Marine ecology</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Population Dynamics</subject><subject>Predation</subject><subject>predators</subject><subject>recruitment facilitation</subject><subject>reefs</subject><subject>resilience</subject><subject>Sea urchins</subject><subject>Sea Urchins - physiology</subject><subject>storms</subject><subject>Synecology</subject><subject>urchin barren</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkt-L1DAQx4Mo3t7pg3-AWhQRH3rONE3SPMpyesKBoN6DT2E2nUqXbrsmrbL__aV29UAU85If88n3m5mJEI8QzrGy8BpsDgrVOd4RK7TS5hYN3BUrACxyq1V1Ik5j3EIaWFb3xUkBqpIGzUpcfmQfpnbccT9mDfm2a0ca26HPPPVZHdrvnFE3cujTaVrHFOWYpfjIuz2HtMsCcxMfiHsNdZEfHuczcf324vP6Mr_68O79-s1VTkpZmXulSGq02mIl0ZdGsZeFt3VpQPuUTc2bhhUDKYLal95Sg7SRBZfG1F7KM_Fy0d2H4dvEcXS7NnruOup5mKIzpZZQKav_T0pZGo26SuSzP8jtMKWMu-ik1ga11LPxqwXyYYgxcOP2od1RODgEN7fBgXVzGxwm9slRcNrsuP5N_qp7Al4cAYqeuiZQ79t4yxUWsCogcWrhfrQdH_7t6C7WXwpAsKjR_Hzs4-XeNo5DuNVVuoIS59o8XeINDY6-huR9_SkJ6PRDrLF6dn6-EDQe9kPvONJfEr0BG-i6dw</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Baskett, Marissa L</creator><creator>Salomon, Anne K</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7TN</scope><scope>7U6</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>201006</creationdate><title>Recruitment facilitation can drive alternative states on temperate reefs</title><author>Baskett, Marissa L ; Salomon, Anne K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5593-c55a3619691831c475ec32c9d4706c189debfe5e0a5a0dc4c9af1ab32e477dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algae</topic><topic>alternative states</topic><topic>Animal and plant ecology</topic><topic>Animal behavior</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Climate</topic><topic>community structure</topic><topic>crustose coralline algae</topic><topic>Echinodermata</topic><topic>Echinoidea</topic><topic>Ecological balance</topic><topic>Ecological competition</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Eukaryota - physiology</topic><topic>Evolution</topic><topic>Feeding Behavior</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>grazing</topic><topic>harvesting</topic><topic>Herbivores</topic><topic>herbivory</topic><topic>hysteresis</topic><topic>Invertebrates</topic><topic>kelp forest</topic><topic>Macroalgae</topic><topic>Marine</topic><topic>Marine ecology</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Population Dynamics</topic><topic>Predation</topic><topic>predators</topic><topic>recruitment facilitation</topic><topic>reefs</topic><topic>resilience</topic><topic>Sea urchins</topic><topic>Sea Urchins - physiology</topic><topic>storms</topic><topic>Synecology</topic><topic>urchin barren</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baskett, Marissa L</creatorcontrib><creatorcontrib>Salomon, Anne K</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baskett, Marissa L</au><au>Salomon, Anne K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recruitment facilitation can drive alternative states on temperate reefs</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2010-06</date><risdate>2010</risdate><volume>91</volume><issue>6</issue><spage>1763</spage><epage>1773</epage><pages>1763-1773</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>20583717</pmid><doi>10.1890/09-0515.1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2010-06, Vol.91 (6), p.1763-1773
issn 0012-9658
1939-9170
language eng
recordid cdi_jstor_primary_25680416
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Online Library All Journals
subjects Algae
alternative states
Animal and plant ecology
Animal behavior
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Climate
community structure
crustose coralline algae
Echinodermata
Echinoidea
Ecological balance
Ecological competition
Ecology
Ecosystem
Eukaryota - physiology
Evolution
Feeding Behavior
Fundamental and applied biological sciences. Psychology
General aspects
grazing
harvesting
Herbivores
herbivory
hysteresis
Invertebrates
kelp forest
Macroalgae
Marine
Marine ecology
Models, Biological
Mortality
Population Dynamics
Predation
predators
recruitment facilitation
reefs
resilience
Sea urchins
Sea Urchins - physiology
storms
Synecology
urchin barren
title Recruitment facilitation can drive alternative states on temperate reefs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recruitment%20facilitation%20can%20drive%20alternative%20states%20on%20temperate%20reefs&rft.jtitle=Ecology%20(Durham)&rft.au=Baskett,%20Marissa%20L&rft.date=2010-06&rft.volume=91&rft.issue=6&rft.spage=1763&rft.epage=1773&rft.pages=1763-1773&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/09-0515.1&rft_dat=%3Cjstor_proqu%3E25680416%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=366716363&rft_id=info:pmid/20583717&rft_jstor_id=25680416&rfr_iscdi=true