Reversal of hippocampal neuronal maturation by serotonergic antidepressants

Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a cand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-05, Vol.107 (18), p.8434-8439
Hauptverfasser: Kobayashi, Katsunori, Ikeda, Yumiko, Sakai, Atsushi, Yamasaki, Nobuyuki, Haneda, Eisuke, Miyakawa, Tsuyoshi, Suzuki, Hidenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8439
container_issue 18
container_start_page 8434
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Kobayashi, Katsunori
Ikeda, Yumiko
Sakai, Atsushi
Yamasaki, Nobuyuki
Haneda, Eisuke
Miyakawa, Tsuyoshi
Suzuki, Hidenori
description Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT₄ receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT₄ receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT₄ receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.
doi_str_mv 10.1073/pnas.0912690107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25665556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25665556</jstor_id><sourcerecordid>25665556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-f6011a505efb0dd1f19cf1aa2735dab8c9f7cceeccc3f4c3099de08f070881b63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCmRMQceGUdvwV2xckVFGKWgkJ6NlyHHubVWIHO6nUf1-vdukCl548Yz_zznhehN5gOMUg6NkUTD4FhUmjoFw8QytcsrphCp6jFQARtWSEHaHjnDcAoLiEl-iIAAOGG75CVz_cnUvZDFX01W0_TdGacSppcEuKoQSjmZdk5j6Gqr2vsktxjsGldW8rE-a-c1NyOZcwv0IvvBmye70_T9DNxZdf55f19fev384_X9eWSzHXvgGMDQfufAtdhz1W1mNjiKC8M620ygtrnbPWUs8sBaU6B9KDAClx29AT9GmnOy3t6DrrwpzMoKfUjybd62h6_e9L6G_1Ot5pIqXinBaBj3uBFH8vLs967LN1w2CCi0vWgjFBMFD8NEkplqwstZAf_iM3cUllgVkTwIxIxViBznaQTTHn5Pzj0Bj01lC9NVQfDC0V7_7-6yP_x8ECvN8D28qDnNBYasnotunbHbHJc0wHBd40nPPmoOBN1Gad-qxvfpaZKWBJJRUNfQA1HruU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201428944</pqid></control><display><type>article</type><title>Reversal of hippocampal neuronal maturation by serotonergic antidepressants</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kobayashi, Katsunori ; Ikeda, Yumiko ; Sakai, Atsushi ; Yamasaki, Nobuyuki ; Haneda, Eisuke ; Miyakawa, Tsuyoshi ; Suzuki, Hidenori</creator><creatorcontrib>Kobayashi, Katsunori ; Ikeda, Yumiko ; Sakai, Atsushi ; Yamasaki, Nobuyuki ; Haneda, Eisuke ; Miyakawa, Tsuyoshi ; Suzuki, Hidenori</creatorcontrib><description>Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT₄ receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT₄ receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT₄ receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0912690107</identifier><identifier>PMID: 20404165</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aging ; Animals ; Antidepressants ; Antidepressive Agents, Second-Generation - pharmacology ; Behavioral neuroscience ; Biological Sciences ; Biomarkers - metabolism ; Brain ; Calbindins ; Cells ; Dentate gyrus ; Down-Regulation ; Fluoxetine - pharmacology ; Genotype &amp; phenotype ; Hippocampus - drug effects ; Hippocampus - growth &amp; development ; Hippocampus - metabolism ; Male ; Maturation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurogenesis ; Neurons ; Pyramidal cells ; Receptors ; Receptors, Serotonin, 5-HT4 - deficiency ; Receptors, Serotonin, 5-HT4 - metabolism ; S100 Calcium Binding Protein G - metabolism ; Serotonin ; Serotonin - metabolism ; Serotonin receptors ; Synapses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (18), p.8434-8439</ispartof><rights>Copyright National Academy of Sciences May 4, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-f6011a505efb0dd1f19cf1aa2735dab8c9f7cceeccc3f4c3099de08f070881b63</citedby><cites>FETCH-LOGICAL-c587t-f6011a505efb0dd1f19cf1aa2735dab8c9f7cceeccc3f4c3099de08f070881b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25665556$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25665556$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20404165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Katsunori</creatorcontrib><creatorcontrib>Ikeda, Yumiko</creatorcontrib><creatorcontrib>Sakai, Atsushi</creatorcontrib><creatorcontrib>Yamasaki, Nobuyuki</creatorcontrib><creatorcontrib>Haneda, Eisuke</creatorcontrib><creatorcontrib>Miyakawa, Tsuyoshi</creatorcontrib><creatorcontrib>Suzuki, Hidenori</creatorcontrib><title>Reversal of hippocampal neuronal maturation by serotonergic antidepressants</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT₄ receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT₄ receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT₄ receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.</description><subject>Aging</subject><subject>Animals</subject><subject>Antidepressants</subject><subject>Antidepressive Agents, Second-Generation - pharmacology</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Biomarkers - metabolism</subject><subject>Brain</subject><subject>Calbindins</subject><subject>Cells</subject><subject>Dentate gyrus</subject><subject>Down-Regulation</subject><subject>Fluoxetine - pharmacology</subject><subject>Genotype &amp; phenotype</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - growth &amp; development</subject><subject>Hippocampus - metabolism</subject><subject>Male</subject><subject>Maturation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Pyramidal cells</subject><subject>Receptors</subject><subject>Receptors, Serotonin, 5-HT4 - deficiency</subject><subject>Receptors, Serotonin, 5-HT4 - metabolism</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Serotonin</subject><subject>Serotonin - metabolism</subject><subject>Serotonin receptors</subject><subject>Synapses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvCmRMQceGUdvwV2xckVFGKWgkJ6NlyHHubVWIHO6nUf1-vdukCl548Yz_zznhehN5gOMUg6NkUTD4FhUmjoFw8QytcsrphCp6jFQARtWSEHaHjnDcAoLiEl-iIAAOGG75CVz_cnUvZDFX01W0_TdGacSppcEuKoQSjmZdk5j6Gqr2vsktxjsGldW8rE-a-c1NyOZcwv0IvvBmye70_T9DNxZdf55f19fev384_X9eWSzHXvgGMDQfufAtdhz1W1mNjiKC8M620ygtrnbPWUs8sBaU6B9KDAClx29AT9GmnOy3t6DrrwpzMoKfUjybd62h6_e9L6G_1Ot5pIqXinBaBj3uBFH8vLs967LN1w2CCi0vWgjFBMFD8NEkplqwstZAf_iM3cUllgVkTwIxIxViBznaQTTHn5Pzj0Bj01lC9NVQfDC0V7_7-6yP_x8ECvN8D28qDnNBYasnotunbHbHJc0wHBd40nPPmoOBN1Gad-qxvfpaZKWBJJRUNfQA1HruU</recordid><startdate>20100504</startdate><enddate>20100504</enddate><creator>Kobayashi, Katsunori</creator><creator>Ikeda, Yumiko</creator><creator>Sakai, Atsushi</creator><creator>Yamasaki, Nobuyuki</creator><creator>Haneda, Eisuke</creator><creator>Miyakawa, Tsuyoshi</creator><creator>Suzuki, Hidenori</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100504</creationdate><title>Reversal of hippocampal neuronal maturation by serotonergic antidepressants</title><author>Kobayashi, Katsunori ; Ikeda, Yumiko ; Sakai, Atsushi ; Yamasaki, Nobuyuki ; Haneda, Eisuke ; Miyakawa, Tsuyoshi ; Suzuki, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-f6011a505efb0dd1f19cf1aa2735dab8c9f7cceeccc3f4c3099de08f070881b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Antidepressants</topic><topic>Antidepressive Agents, Second-Generation - pharmacology</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Biomarkers - metabolism</topic><topic>Brain</topic><topic>Calbindins</topic><topic>Cells</topic><topic>Dentate gyrus</topic><topic>Down-Regulation</topic><topic>Fluoxetine - pharmacology</topic><topic>Genotype &amp; phenotype</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - growth &amp; development</topic><topic>Hippocampus - metabolism</topic><topic>Male</topic><topic>Maturation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Pyramidal cells</topic><topic>Receptors</topic><topic>Receptors, Serotonin, 5-HT4 - deficiency</topic><topic>Receptors, Serotonin, 5-HT4 - metabolism</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Serotonin</topic><topic>Serotonin - metabolism</topic><topic>Serotonin receptors</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Katsunori</creatorcontrib><creatorcontrib>Ikeda, Yumiko</creatorcontrib><creatorcontrib>Sakai, Atsushi</creatorcontrib><creatorcontrib>Yamasaki, Nobuyuki</creatorcontrib><creatorcontrib>Haneda, Eisuke</creatorcontrib><creatorcontrib>Miyakawa, Tsuyoshi</creatorcontrib><creatorcontrib>Suzuki, Hidenori</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Katsunori</au><au>Ikeda, Yumiko</au><au>Sakai, Atsushi</au><au>Yamasaki, Nobuyuki</au><au>Haneda, Eisuke</au><au>Miyakawa, Tsuyoshi</au><au>Suzuki, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversal of hippocampal neuronal maturation by serotonergic antidepressants</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-05-04</date><risdate>2010</risdate><volume>107</volume><issue>18</issue><spage>8434</spage><epage>8439</epage><pages>8434-8439</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT₄ receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT₄ receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT₄ receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20404165</pmid><doi>10.1073/pnas.0912690107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (18), p.8434-8439
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_25665556
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aging
Animals
Antidepressants
Antidepressive Agents, Second-Generation - pharmacology
Behavioral neuroscience
Biological Sciences
Biomarkers - metabolism
Brain
Calbindins
Cells
Dentate gyrus
Down-Regulation
Fluoxetine - pharmacology
Genotype & phenotype
Hippocampus - drug effects
Hippocampus - growth & development
Hippocampus - metabolism
Male
Maturation
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurogenesis
Neurons
Pyramidal cells
Receptors
Receptors, Serotonin, 5-HT4 - deficiency
Receptors, Serotonin, 5-HT4 - metabolism
S100 Calcium Binding Protein G - metabolism
Serotonin
Serotonin - metabolism
Serotonin receptors
Synapses
title Reversal of hippocampal neuronal maturation by serotonergic antidepressants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversal%20of%20hippocampal%20neuronal%20maturation%20by%20serotonergic%20antidepressants&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kobayashi,%20Katsunori&rft.date=2010-05-04&rft.volume=107&rft.issue=18&rft.spage=8434&rft.epage=8439&rft.pages=8434-8439&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0912690107&rft_dat=%3Cjstor_proqu%3E25665556%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201428944&rft_id=info:pmid/20404165&rft_jstor_id=25665556&rfr_iscdi=true