Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity

G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-04, Vol.107 (15), p.7066-7071
Hauptverfasser: Lambert, Nevin A, Johnston, Christopher A, Cappell, Steven D, Kuravi, Sudhakiranmayi, Kimple, Adam J, Willard, Francis S, Siderovski, David P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7071
container_issue 15
container_start_page 7066
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Lambert, Nevin A
Johnston, Christopher A
Cappell, Steven D
Kuravi, Sudhakiranmayi
Kimple, Adam J
Willard, Francis S
Siderovski, David P
description G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.
doi_str_mv 10.1073/pnas.0912934107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_25665303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25665303</jstor_id><sourcerecordid>25665303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EoqFw5gRY3Lf15673glRFEJAqUfXjbHnt2cVhawd7UylX_nK8SkjgZHnm957H8xB6S8kFJQ2_3ASTL0hLWctFKTxDC1puVS1a8hwtCGFNpQQTZ-hVzmtCSCsVeYnOGOGSMiUW6PctDNvRTDFlHHu8qjYpTuADvvNDMKMPAzbWwgjJTIBXN8tbnI-dnz7A5G3GJjg8xCdIAWcI2U_-yU87nOMI4w53u5PHLFvd35gMpbbHXqMXvRkzvDmc5-jhy-f75dfq-vvq2_LqurJSyqkSsgEFTvWt4ACdYr1wrmG1tZKAawh01DGnnKpNY-vOWevKTmQHVAjhasXP0ae972bbPYKzEKZkRr1J_tGknY7G6_87wf_Q5VeaqYYJPht8PBik-GsLedLruE1lF1kzQgVTSszQ5R6yKeacoD8-QImeM9NzZvqUWVG8_3euI_83pAJ8OACz8mTXaCp1Q-q6EO_2xDqXJE8Osq4lJ_zk0JuozZB81g93ZWZOqGJKypb_AbgJs98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201428848</pqid></control><display><type>article</type><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</creator><creatorcontrib>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</creatorcontrib><description>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0912934107</identifier><identifier>PMID: 20351284</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agonists ; Alanine - chemistry ; Biological Sciences ; Chemical reactions ; Dimers ; Dose-Response Relationship, Drug ; Gene expression regulation ; Glycine - chemistry ; GTP Phosphohydrolases - chemistry ; GTP-Binding Proteins - metabolism ; Humans ; Hydrolysis ; Kinetics ; Luminescence ; Models, Molecular ; Mutation ; Pheromones ; Pheromones - metabolism ; Proteins ; Reaction kinetics ; Receptors ; Receptors, G-Protein-Coupled - metabolism ; RGS proteins ; Saccharomyces cerevisiae - metabolism ; Signal Transduction ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (15), p.7066-7071</ispartof><rights>Copyright National Academy of Sciences Apr 13, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</citedby><cites>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25665303$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25665303$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20351284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambert, Nevin A</creatorcontrib><creatorcontrib>Johnston, Christopher A</creatorcontrib><creatorcontrib>Cappell, Steven D</creatorcontrib><creatorcontrib>Kuravi, Sudhakiranmayi</creatorcontrib><creatorcontrib>Kimple, Adam J</creatorcontrib><creatorcontrib>Willard, Francis S</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</description><subject>Agonists</subject><subject>Alanine - chemistry</subject><subject>Biological Sciences</subject><subject>Chemical reactions</subject><subject>Dimers</subject><subject>Dose-Response Relationship, Drug</subject><subject>Gene expression regulation</subject><subject>Glycine - chemistry</subject><subject>GTP Phosphohydrolases - chemistry</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Luminescence</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Pheromones</subject><subject>Pheromones - metabolism</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>RGS proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1vEzEQxS0EoqFw5gRY3Lf15673glRFEJAqUfXjbHnt2cVhawd7UylX_nK8SkjgZHnm957H8xB6S8kFJQ2_3ASTL0hLWctFKTxDC1puVS1a8hwtCGFNpQQTZ-hVzmtCSCsVeYnOGOGSMiUW6PctDNvRTDFlHHu8qjYpTuADvvNDMKMPAzbWwgjJTIBXN8tbnI-dnz7A5G3GJjg8xCdIAWcI2U_-yU87nOMI4w53u5PHLFvd35gMpbbHXqMXvRkzvDmc5-jhy-f75dfq-vvq2_LqurJSyqkSsgEFTvWt4ACdYr1wrmG1tZKAawh01DGnnKpNY-vOWevKTmQHVAjhasXP0ae972bbPYKzEKZkRr1J_tGknY7G6_87wf_Q5VeaqYYJPht8PBik-GsLedLruE1lF1kzQgVTSszQ5R6yKeacoD8-QImeM9NzZvqUWVG8_3euI_83pAJ8OACz8mTXaCp1Q-q6EO_2xDqXJE8Osq4lJ_zk0JuozZB81g93ZWZOqGJKypb_AbgJs98</recordid><startdate>20100413</startdate><enddate>20100413</enddate><creator>Lambert, Nevin A</creator><creator>Johnston, Christopher A</creator><creator>Cappell, Steven D</creator><creator>Kuravi, Sudhakiranmayi</creator><creator>Kimple, Adam J</creator><creator>Willard, Francis S</creator><creator>Siderovski, David P</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100413</creationdate><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><author>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agonists</topic><topic>Alanine - chemistry</topic><topic>Biological Sciences</topic><topic>Chemical reactions</topic><topic>Dimers</topic><topic>Dose-Response Relationship, Drug</topic><topic>Gene expression regulation</topic><topic>Glycine - chemistry</topic><topic>GTP Phosphohydrolases - chemistry</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Luminescence</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Pheromones</topic><topic>Pheromones - metabolism</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>RGS proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Nevin A</creatorcontrib><creatorcontrib>Johnston, Christopher A</creatorcontrib><creatorcontrib>Cappell, Steven D</creatorcontrib><creatorcontrib>Kuravi, Sudhakiranmayi</creatorcontrib><creatorcontrib>Kimple, Adam J</creatorcontrib><creatorcontrib>Willard, Francis S</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Nevin A</au><au>Johnston, Christopher A</au><au>Cappell, Steven D</au><au>Kuravi, Sudhakiranmayi</au><au>Kimple, Adam J</au><au>Willard, Francis S</au><au>Siderovski, David P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-04-13</date><risdate>2010</risdate><volume>107</volume><issue>15</issue><spage>7066</spage><epage>7071</epage><pages>7066-7071</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20351284</pmid><doi>10.1073/pnas.0912934107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (15), p.7066-7071
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_25665303
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agonists
Alanine - chemistry
Biological Sciences
Chemical reactions
Dimers
Dose-Response Relationship, Drug
Gene expression regulation
Glycine - chemistry
GTP Phosphohydrolases - chemistry
GTP-Binding Proteins - metabolism
Humans
Hydrolysis
Kinetics
Luminescence
Models, Molecular
Mutation
Pheromones
Pheromones - metabolism
Proteins
Reaction kinetics
Receptors
Receptors, G-Protein-Coupled - metabolism
RGS proteins
Saccharomyces cerevisiae - metabolism
Signal Transduction
Yeasts
title Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulators%20of%20G-protein%20Signaling%20accelerate%20GPCR%20signaling%20kinetics%20and%20govern%20sensitivity%20solely%20by%20accelerating%20GTPase%20activity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lambert,%20Nevin%20A&rft.date=2010-04-13&rft.volume=107&rft.issue=15&rft.spage=7066&rft.epage=7071&rft.pages=7066-7071&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0912934107&rft_dat=%3Cjstor_pubme%3E25665303%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201428848&rft_id=info:pmid/20351284&rft_jstor_id=25665303&rfr_iscdi=true