Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity
G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-04, Vol.107 (15), p.7066-7071 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7071 |
---|---|
container_issue | 15 |
container_start_page | 7066 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Lambert, Nevin A Johnston, Christopher A Cappell, Steven D Kuravi, Sudhakiranmayi Kimple, Adam J Willard, Francis S Siderovski, David P |
description | G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context. |
doi_str_mv | 10.1073/pnas.0912934107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_25665303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25665303</jstor_id><sourcerecordid>25665303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EoqFw5gRY3Lf15673glRFEJAqUfXjbHnt2cVhawd7UylX_nK8SkjgZHnm957H8xB6S8kFJQ2_3ASTL0hLWctFKTxDC1puVS1a8hwtCGFNpQQTZ-hVzmtCSCsVeYnOGOGSMiUW6PctDNvRTDFlHHu8qjYpTuADvvNDMKMPAzbWwgjJTIBXN8tbnI-dnz7A5G3GJjg8xCdIAWcI2U_-yU87nOMI4w53u5PHLFvd35gMpbbHXqMXvRkzvDmc5-jhy-f75dfq-vvq2_LqurJSyqkSsgEFTvWt4ACdYr1wrmG1tZKAawh01DGnnKpNY-vOWevKTmQHVAjhasXP0ae972bbPYKzEKZkRr1J_tGknY7G6_87wf_Q5VeaqYYJPht8PBik-GsLedLruE1lF1kzQgVTSszQ5R6yKeacoD8-QImeM9NzZvqUWVG8_3euI_83pAJ8OACz8mTXaCp1Q-q6EO_2xDqXJE8Osq4lJ_zk0JuozZB81g93ZWZOqGJKypb_AbgJs98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201428848</pqid></control><display><type>article</type><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</creator><creatorcontrib>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</creatorcontrib><description>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0912934107</identifier><identifier>PMID: 20351284</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agonists ; Alanine - chemistry ; Biological Sciences ; Chemical reactions ; Dimers ; Dose-Response Relationship, Drug ; Gene expression regulation ; Glycine - chemistry ; GTP Phosphohydrolases - chemistry ; GTP-Binding Proteins - metabolism ; Humans ; Hydrolysis ; Kinetics ; Luminescence ; Models, Molecular ; Mutation ; Pheromones ; Pheromones - metabolism ; Proteins ; Reaction kinetics ; Receptors ; Receptors, G-Protein-Coupled - metabolism ; RGS proteins ; Saccharomyces cerevisiae - metabolism ; Signal Transduction ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (15), p.7066-7071</ispartof><rights>Copyright National Academy of Sciences Apr 13, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</citedby><cites>FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25665303$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25665303$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20351284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambert, Nevin A</creatorcontrib><creatorcontrib>Johnston, Christopher A</creatorcontrib><creatorcontrib>Cappell, Steven D</creatorcontrib><creatorcontrib>Kuravi, Sudhakiranmayi</creatorcontrib><creatorcontrib>Kimple, Adam J</creatorcontrib><creatorcontrib>Willard, Francis S</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</description><subject>Agonists</subject><subject>Alanine - chemistry</subject><subject>Biological Sciences</subject><subject>Chemical reactions</subject><subject>Dimers</subject><subject>Dose-Response Relationship, Drug</subject><subject>Gene expression regulation</subject><subject>Glycine - chemistry</subject><subject>GTP Phosphohydrolases - chemistry</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Luminescence</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Pheromones</subject><subject>Pheromones - metabolism</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>RGS proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1vEzEQxS0EoqFw5gRY3Lf15673glRFEJAqUfXjbHnt2cVhawd7UylX_nK8SkjgZHnm957H8xB6S8kFJQ2_3ASTL0hLWctFKTxDC1puVS1a8hwtCGFNpQQTZ-hVzmtCSCsVeYnOGOGSMiUW6PctDNvRTDFlHHu8qjYpTuADvvNDMKMPAzbWwgjJTIBXN8tbnI-dnz7A5G3GJjg8xCdIAWcI2U_-yU87nOMI4w53u5PHLFvd35gMpbbHXqMXvRkzvDmc5-jhy-f75dfq-vvq2_LqurJSyqkSsgEFTvWt4ACdYr1wrmG1tZKAawh01DGnnKpNY-vOWevKTmQHVAjhasXP0ae972bbPYKzEKZkRr1J_tGknY7G6_87wf_Q5VeaqYYJPht8PBik-GsLedLruE1lF1kzQgVTSszQ5R6yKeacoD8-QImeM9NzZvqUWVG8_3euI_83pAJ8OACz8mTXaCp1Q-q6EO_2xDqXJE8Osq4lJ_zk0JuozZB81g93ZWZOqGJKypb_AbgJs98</recordid><startdate>20100413</startdate><enddate>20100413</enddate><creator>Lambert, Nevin A</creator><creator>Johnston, Christopher A</creator><creator>Cappell, Steven D</creator><creator>Kuravi, Sudhakiranmayi</creator><creator>Kimple, Adam J</creator><creator>Willard, Francis S</creator><creator>Siderovski, David P</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100413</creationdate><title>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</title><author>Lambert, Nevin A ; Johnston, Christopher A ; Cappell, Steven D ; Kuravi, Sudhakiranmayi ; Kimple, Adam J ; Willard, Francis S ; Siderovski, David P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-457e8ed8f943eeb82f4dd726cc50ed70eb1d2d8d86a7c6bdccd3415be1444d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agonists</topic><topic>Alanine - chemistry</topic><topic>Biological Sciences</topic><topic>Chemical reactions</topic><topic>Dimers</topic><topic>Dose-Response Relationship, Drug</topic><topic>Gene expression regulation</topic><topic>Glycine - chemistry</topic><topic>GTP Phosphohydrolases - chemistry</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Luminescence</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Pheromones</topic><topic>Pheromones - metabolism</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>RGS proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Nevin A</creatorcontrib><creatorcontrib>Johnston, Christopher A</creatorcontrib><creatorcontrib>Cappell, Steven D</creatorcontrib><creatorcontrib>Kuravi, Sudhakiranmayi</creatorcontrib><creatorcontrib>Kimple, Adam J</creatorcontrib><creatorcontrib>Willard, Francis S</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Nevin A</au><au>Johnston, Christopher A</au><au>Cappell, Steven D</au><au>Kuravi, Sudhakiranmayi</au><au>Kimple, Adam J</au><au>Willard, Francis S</au><au>Siderovski, David P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-04-13</date><risdate>2010</risdate><volume>107</volume><issue>15</issue><spage>7066</spage><epage>7071</epage><pages>7066-7071</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF₄ ⁻-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi₁(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF₄ ⁻-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20351284</pmid><doi>10.1073/pnas.0912934107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (15), p.7066-7071 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_25665303 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agonists Alanine - chemistry Biological Sciences Chemical reactions Dimers Dose-Response Relationship, Drug Gene expression regulation Glycine - chemistry GTP Phosphohydrolases - chemistry GTP-Binding Proteins - metabolism Humans Hydrolysis Kinetics Luminescence Models, Molecular Mutation Pheromones Pheromones - metabolism Proteins Reaction kinetics Receptors Receptors, G-Protein-Coupled - metabolism RGS proteins Saccharomyces cerevisiae - metabolism Signal Transduction Yeasts |
title | Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulators%20of%20G-protein%20Signaling%20accelerate%20GPCR%20signaling%20kinetics%20and%20govern%20sensitivity%20solely%20by%20accelerating%20GTPase%20activity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lambert,%20Nevin%20A&rft.date=2010-04-13&rft.volume=107&rft.issue=15&rft.spage=7066&rft.epage=7071&rft.pages=7066-7071&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0912934107&rft_dat=%3Cjstor_pubme%3E25665303%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201428848&rft_id=info:pmid/20351284&rft_jstor_id=25665303&rfr_iscdi=true |