Particle dynamics inside shocks in Hamilton-Jacobi equations
The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1593 |
---|---|
container_issue | 1916 |
container_start_page | 1579 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 368 |
creator | Khanin, Konstantin Sobolevski, Andrei |
description | The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity. |
doi_str_mv | 10.1098/rsta.2009.0283 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_25663333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25663333</jstor_id><sourcerecordid>25663333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtRCIloUrN1BunLJ47MRxJC7VqlBgEV8FVb2MHMcR3s3GW9tBLL8eh5QihMAX-3nezJv3CHkIdAm0lk99iGrJKK2XlEl-ixxDUUHOasFupzcXRV5SfnFE7oWwoRRAlOwuOWKUAciqPCbP3ikfre5N1h4GtbM6ZHYItjVZ-OL0dkLZWfrvoxvyV0q7xmbmalTRuiHcJ3c61Qfz4PpekE_PT89XZ_n67YuXq5N1rksuY85rSpWqu5LJGtoODHS8YbrTjPFOal0nVJdMGCnaRgHrKt7IClpe0AkAX5An89y9d1ejCRF3NmjT92owbgxYcS6kqMTEXM5M7V0I3nS493an_AGB4hQYToHhFBhOgaWGx9ejx2Zn2hv6r4QSYTsTvDskj05bEw-4caMfEsQPH89PviZ1CzUIpJIDFSCB4Xe7n7VSEW0Io8GflD_1_16H_0_tnyYezV2bEJ3_7aEUgk9nQfK5bkM0327qym9RVLwq8bMs8PX7N-vL4uISV_wHIQSzeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733686761</pqid></control><display><type>article</type><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khanin, Konstantin ; Sobolevski, Andrei</creator><creatorcontrib>Khanin, Konstantin ; Sobolevski, Andrei</creatorcontrib><description>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2009.0283</identifier><identifier>PMID: 20211875</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Burger equation ; Control Theory ; Convex Sets And Geometric Inequalities ; Flow velocity ; Hamilton Jacobi equation ; Hamiltonian Formulations ; Lagrangian function ; Mathematics ; Momentum ; Shock Wave Interactions And Shock Effects ; Singularity Theory ; Trajectories ; Uniqueness ; Velocity ; Viscosity</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>2010 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</citedby><cites>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25663333$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25663333$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20211875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanin, Konstantin</creatorcontrib><creatorcontrib>Sobolevski, Andrei</creatorcontrib><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</description><subject>Burger equation</subject><subject>Control Theory</subject><subject>Convex Sets And Geometric Inequalities</subject><subject>Flow velocity</subject><subject>Hamilton Jacobi equation</subject><subject>Hamiltonian Formulations</subject><subject>Lagrangian function</subject><subject>Mathematics</subject><subject>Momentum</subject><subject>Shock Wave Interactions And Shock Effects</subject><subject>Singularity Theory</subject><subject>Trajectories</subject><subject>Uniqueness</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtRCIloUrN1BunLJ47MRxJC7VqlBgEV8FVb2MHMcR3s3GW9tBLL8eh5QihMAX-3nezJv3CHkIdAm0lk99iGrJKK2XlEl-ixxDUUHOasFupzcXRV5SfnFE7oWwoRRAlOwuOWKUAciqPCbP3ikfre5N1h4GtbM6ZHYItjVZ-OL0dkLZWfrvoxvyV0q7xmbmalTRuiHcJ3c61Qfz4PpekE_PT89XZ_n67YuXq5N1rksuY85rSpWqu5LJGtoODHS8YbrTjPFOal0nVJdMGCnaRgHrKt7IClpe0AkAX5An89y9d1ejCRF3NmjT92owbgxYcS6kqMTEXM5M7V0I3nS493an_AGB4hQYToHhFBhOgaWGx9ejx2Zn2hv6r4QSYTsTvDskj05bEw-4caMfEsQPH89PviZ1CzUIpJIDFSCB4Xe7n7VSEW0Io8GflD_1_16H_0_tnyYezV2bEJ3_7aEUgk9nQfK5bkM0327qym9RVLwq8bMs8PX7N-vL4uISV_wHIQSzeg</recordid><startdate>20100413</startdate><enddate>20100413</enddate><creator>Khanin, Konstantin</creator><creator>Sobolevski, Andrei</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100413</creationdate><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><author>Khanin, Konstantin ; Sobolevski, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Burger equation</topic><topic>Control Theory</topic><topic>Convex Sets And Geometric Inequalities</topic><topic>Flow velocity</topic><topic>Hamilton Jacobi equation</topic><topic>Hamiltonian Formulations</topic><topic>Lagrangian function</topic><topic>Mathematics</topic><topic>Momentum</topic><topic>Shock Wave Interactions And Shock Effects</topic><topic>Singularity Theory</topic><topic>Trajectories</topic><topic>Uniqueness</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanin, Konstantin</creatorcontrib><creatorcontrib>Sobolevski, Andrei</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanin, Konstantin</au><au>Sobolevski, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle dynamics inside shocks in Hamilton-Jacobi equations</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2010-04-13</date><risdate>2010</risdate><volume>368</volume><issue>1916</issue><spage>1579</spage><epage>1593</epage><pages>1579-1593</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>20211875</pmid><doi>10.1098/rsta.2009.0283</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_25663333 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Burger equation Control Theory Convex Sets And Geometric Inequalities Flow velocity Hamilton Jacobi equation Hamiltonian Formulations Lagrangian function Mathematics Momentum Shock Wave Interactions And Shock Effects Singularity Theory Trajectories Uniqueness Velocity Viscosity |
title | Particle dynamics inside shocks in Hamilton-Jacobi equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20dynamics%20inside%20shocks%20in%20Hamilton-Jacobi%20equations&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Khanin,%20Konstantin&rft.date=2010-04-13&rft.volume=368&rft.issue=1916&rft.spage=1579&rft.epage=1593&rft.pages=1579-1593&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2009.0283&rft_dat=%3Cjstor_royal%3E25663333%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733686761&rft_id=info:pmid/20211875&rft_jstor_id=25663333&rfr_iscdi=true |