Particle dynamics inside shocks in Hamilton-Jacobi equations

The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593
Hauptverfasser: Khanin, Konstantin, Sobolevski, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1593
container_issue 1916
container_start_page 1579
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 368
creator Khanin, Konstantin
Sobolevski, Andrei
description The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.
doi_str_mv 10.1098/rsta.2009.0283
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_25663333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25663333</jstor_id><sourcerecordid>25663333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtRCIloUrN1BunLJ47MRxJC7VqlBgEV8FVb2MHMcR3s3GW9tBLL8eh5QihMAX-3nezJv3CHkIdAm0lk99iGrJKK2XlEl-ixxDUUHOasFupzcXRV5SfnFE7oWwoRRAlOwuOWKUAciqPCbP3ikfre5N1h4GtbM6ZHYItjVZ-OL0dkLZWfrvoxvyV0q7xmbmalTRuiHcJ3c61Qfz4PpekE_PT89XZ_n67YuXq5N1rksuY85rSpWqu5LJGtoODHS8YbrTjPFOal0nVJdMGCnaRgHrKt7IClpe0AkAX5An89y9d1ejCRF3NmjT92owbgxYcS6kqMTEXM5M7V0I3nS493an_AGB4hQYToHhFBhOgaWGx9ejx2Zn2hv6r4QSYTsTvDskj05bEw-4caMfEsQPH89PviZ1CzUIpJIDFSCB4Xe7n7VSEW0Io8GflD_1_16H_0_tnyYezV2bEJ3_7aEUgk9nQfK5bkM0327qym9RVLwq8bMs8PX7N-vL4uISV_wHIQSzeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733686761</pqid></control><display><type>article</type><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khanin, Konstantin ; Sobolevski, Andrei</creator><creatorcontrib>Khanin, Konstantin ; Sobolevski, Andrei</creatorcontrib><description>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2009.0283</identifier><identifier>PMID: 20211875</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Burger equation ; Control Theory ; Convex Sets And Geometric Inequalities ; Flow velocity ; Hamilton Jacobi equation ; Hamiltonian Formulations ; Lagrangian function ; Mathematics ; Momentum ; Shock Wave Interactions And Shock Effects ; Singularity Theory ; Trajectories ; Uniqueness ; Velocity ; Viscosity</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>2010 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</citedby><cites>FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25663333$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25663333$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20211875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanin, Konstantin</creatorcontrib><creatorcontrib>Sobolevski, Andrei</creatorcontrib><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</description><subject>Burger equation</subject><subject>Control Theory</subject><subject>Convex Sets And Geometric Inequalities</subject><subject>Flow velocity</subject><subject>Hamilton Jacobi equation</subject><subject>Hamiltonian Formulations</subject><subject>Lagrangian function</subject><subject>Mathematics</subject><subject>Momentum</subject><subject>Shock Wave Interactions And Shock Effects</subject><subject>Singularity Theory</subject><subject>Trajectories</subject><subject>Uniqueness</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtRCIloUrN1BunLJ47MRxJC7VqlBgEV8FVb2MHMcR3s3GW9tBLL8eh5QihMAX-3nezJv3CHkIdAm0lk99iGrJKK2XlEl-ixxDUUHOasFupzcXRV5SfnFE7oWwoRRAlOwuOWKUAciqPCbP3ikfre5N1h4GtbM6ZHYItjVZ-OL0dkLZWfrvoxvyV0q7xmbmalTRuiHcJ3c61Qfz4PpekE_PT89XZ_n67YuXq5N1rksuY85rSpWqu5LJGtoODHS8YbrTjPFOal0nVJdMGCnaRgHrKt7IClpe0AkAX5An89y9d1ejCRF3NmjT92owbgxYcS6kqMTEXM5M7V0I3nS493an_AGB4hQYToHhFBhOgaWGx9ejx2Zn2hv6r4QSYTsTvDskj05bEw-4caMfEsQPH89PviZ1CzUIpJIDFSCB4Xe7n7VSEW0Io8GflD_1_16H_0_tnyYezV2bEJ3_7aEUgk9nQfK5bkM0327qym9RVLwq8bMs8PX7N-vL4uISV_wHIQSzeg</recordid><startdate>20100413</startdate><enddate>20100413</enddate><creator>Khanin, Konstantin</creator><creator>Sobolevski, Andrei</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100413</creationdate><title>Particle dynamics inside shocks in Hamilton-Jacobi equations</title><author>Khanin, Konstantin ; Sobolevski, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-3900aa9f52891df1e1f3b2cfc223f8cc93b29526e86dba12f73b871d34012f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Burger equation</topic><topic>Control Theory</topic><topic>Convex Sets And Geometric Inequalities</topic><topic>Flow velocity</topic><topic>Hamilton Jacobi equation</topic><topic>Hamiltonian Formulations</topic><topic>Lagrangian function</topic><topic>Mathematics</topic><topic>Momentum</topic><topic>Shock Wave Interactions And Shock Effects</topic><topic>Singularity Theory</topic><topic>Trajectories</topic><topic>Uniqueness</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanin, Konstantin</creatorcontrib><creatorcontrib>Sobolevski, Andrei</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanin, Konstantin</au><au>Sobolevski, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle dynamics inside shocks in Hamilton-Jacobi equations</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2010-04-13</date><risdate>2010</risdate><volume>368</volume><issue>1916</issue><spage>1579</spage><epage>1593</epage><pages>1579-1593</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>20211875</pmid><doi>10.1098/rsta.2009.0283</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-04, Vol.368 (1916), p.1579-1593
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_25663333
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Burger equation
Control Theory
Convex Sets And Geometric Inequalities
Flow velocity
Hamilton Jacobi equation
Hamiltonian Formulations
Lagrangian function
Mathematics
Momentum
Shock Wave Interactions And Shock Effects
Singularity Theory
Trajectories
Uniqueness
Velocity
Viscosity
title Particle dynamics inside shocks in Hamilton-Jacobi equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20dynamics%20inside%20shocks%20in%20Hamilton-Jacobi%20equations&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Khanin,%20Konstantin&rft.date=2010-04-13&rft.volume=368&rft.issue=1916&rft.spage=1579&rft.epage=1593&rft.pages=1579-1593&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2009.0283&rft_dat=%3Cjstor_royal%3E25663333%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733686761&rft_id=info:pmid/20211875&rft_jstor_id=25663333&rfr_iscdi=true