Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine
${\rm MIKC}^{{\rm C}}\text{-type}$ MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 ${\rm MIKC}^{{\rm C}}\text{-type}$ genes. We report here a complete analysis of this gene family...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2009-01, Vol.149 (1), p.354-369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 1 |
container_start_page | 354 |
container_title | Plant physiology (Bethesda) |
container_volume | 149 |
creator | Díaz-Riquelme, José Lijavetzky, Diego Martínez-Zapater, José M. Carmona, María José |
description | ${\rm MIKC}^{{\rm C}}\text{-type}$ MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 ${\rm MIKC}^{{\rm C}}\text{-type}$ genes. We report here a complete analysis of this gene family regarding their phylogenetic relationships with homologous genes identified in other sequenced dicot genomes, their genome location, and gene structure and expression. The grapevine genes cluster in 13 subfamilies with their Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) counterparts. The lack of recent whole genome duplications in grapevine allows assigning the gene diversification processes observed within each subfamily either to an ancestral polyploidization event predating the divergence of those three species or to later duplication events within each lineage. Expression profiles of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in vegetative and reproductive organs as well as during flower and tendril development show conserved expression domains for specific subfamilies but also reflect characteristic features of grapevine development. Expression analyses in latent buds and during flower development reveal common features previously described in other plant systems as well as possible new roles for members of some subfamilies during flowering transition. The analysis of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in grapevine helps in understanding the origin of gene diversification within each subfamily and provides the basis for functional analyses to uncover the role of these MADS box genes in grapevine development. |
doi_str_mv | 10.1104/pp.108.131052 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25594939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25594939</jstor_id><sourcerecordid>25594939</sourcerecordid><originalsourceid>FETCH-jstor_primary_255949393</originalsourceid><addsrcrecordid>eNqFjEsLgkAURocoyB7LlsFdtNXuqAO6LHsSroraRCF0g4nUYUYiEf97Eu1bnQPn42NsxNHhHP2pUg7HwOEeR-G2mMWF59qu8IM2sxAbxyAIu6xnzAMRm5lvseOasjwl-yRvBLMseZZGGsjvMKnOOoV4u4vqS_X1qK7PBb2Lyj6UiuoJxLPFHub5G5oPMiAzWOtE0UtmNGCde_I0NPyxz8ar5SHa2A9T5PqqtEwTXV5dIUI_9ELvX_8AFopBOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Díaz-Riquelme, José ; Lijavetzky, Diego ; Martínez-Zapater, José M. ; Carmona, María José</creator><creatorcontrib>Díaz-Riquelme, José ; Lijavetzky, Diego ; Martínez-Zapater, José M. ; Carmona, María José</creatorcontrib><description>${\rm MIKC}^{{\rm C}}\text{-type}$ MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 ${\rm MIKC}^{{\rm C}}\text{-type}$ genes. We report here a complete analysis of this gene family regarding their phylogenetic relationships with homologous genes identified in other sequenced dicot genomes, their genome location, and gene structure and expression. The grapevine genes cluster in 13 subfamilies with their Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) counterparts. The lack of recent whole genome duplications in grapevine allows assigning the gene diversification processes observed within each subfamily either to an ancestral polyploidization event predating the divergence of those three species or to later duplication events within each lineage. Expression profiles of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in vegetative and reproductive organs as well as during flower and tendril development show conserved expression domains for specific subfamilies but also reflect characteristic features of grapevine development. Expression analyses in latent buds and during flower development reveal common features previously described in other plant systems as well as possible new roles for members of some subfamilies during flowering transition. The analysis of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in grapevine helps in understanding the origin of gene diversification within each subfamily and provides the basis for functional analyses to uncover the role of these MADS box genes in grapevine development.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.131052</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Chromosomes ; Flower buds ; Flowering ; Flowers ; Genes ; Genome Analysis ; Genomes ; Inflorescences ; Meristems ; Plants ; Tendrils</subject><ispartof>Plant physiology (Bethesda), 2009-01, Vol.149 (1), p.354-369</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25594939$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25594939$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57996,58229</link.rule.ids></links><search><creatorcontrib>Díaz-Riquelme, José</creatorcontrib><creatorcontrib>Lijavetzky, Diego</creatorcontrib><creatorcontrib>Martínez-Zapater, José M.</creatorcontrib><creatorcontrib>Carmona, María José</creatorcontrib><title>Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine</title><title>Plant physiology (Bethesda)</title><description>${\rm MIKC}^{{\rm C}}\text{-type}$ MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 ${\rm MIKC}^{{\rm C}}\text{-type}$ genes. We report here a complete analysis of this gene family regarding their phylogenetic relationships with homologous genes identified in other sequenced dicot genomes, their genome location, and gene structure and expression. The grapevine genes cluster in 13 subfamilies with their Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) counterparts. The lack of recent whole genome duplications in grapevine allows assigning the gene diversification processes observed within each subfamily either to an ancestral polyploidization event predating the divergence of those three species or to later duplication events within each lineage. Expression profiles of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in vegetative and reproductive organs as well as during flower and tendril development show conserved expression domains for specific subfamilies but also reflect characteristic features of grapevine development. Expression analyses in latent buds and during flower development reveal common features previously described in other plant systems as well as possible new roles for members of some subfamilies during flowering transition. The analysis of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in grapevine helps in understanding the origin of gene diversification within each subfamily and provides the basis for functional analyses to uncover the role of these MADS box genes in grapevine development.</description><subject>Chromosomes</subject><subject>Flower buds</subject><subject>Flowering</subject><subject>Flowers</subject><subject>Genes</subject><subject>Genome Analysis</subject><subject>Genomes</subject><subject>Inflorescences</subject><subject>Meristems</subject><subject>Plants</subject><subject>Tendrils</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjEsLgkAURocoyB7LlsFdtNXuqAO6LHsSroraRCF0g4nUYUYiEf97Eu1bnQPn42NsxNHhHP2pUg7HwOEeR-G2mMWF59qu8IM2sxAbxyAIu6xnzAMRm5lvseOasjwl-yRvBLMseZZGGsjvMKnOOoV4u4vqS_X1qK7PBb2Lyj6UiuoJxLPFHub5G5oPMiAzWOtE0UtmNGCde_I0NPyxz8ar5SHa2A9T5PqqtEwTXV5dIUI_9ELvX_8AFopBOQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Díaz-Riquelme, José</creator><creator>Lijavetzky, Diego</creator><creator>Martínez-Zapater, José M.</creator><creator>Carmona, María José</creator><general>American Society of Plant Biologists</general><scope/></search><sort><creationdate>20090101</creationdate><title>Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine</title><author>Díaz-Riquelme, José ; Lijavetzky, Diego ; Martínez-Zapater, José M. ; Carmona, María José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_255949393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chromosomes</topic><topic>Flower buds</topic><topic>Flowering</topic><topic>Flowers</topic><topic>Genes</topic><topic>Genome Analysis</topic><topic>Genomes</topic><topic>Inflorescences</topic><topic>Meristems</topic><topic>Plants</topic><topic>Tendrils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Riquelme, José</creatorcontrib><creatorcontrib>Lijavetzky, Diego</creatorcontrib><creatorcontrib>Martínez-Zapater, José M.</creatorcontrib><creatorcontrib>Carmona, María José</creatorcontrib><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Riquelme, José</au><au>Lijavetzky, Diego</au><au>Martínez-Zapater, José M.</au><au>Carmona, María José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>149</volume><issue>1</issue><spage>354</spage><epage>369</epage><pages>354-369</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>${\rm MIKC}^{{\rm C}}\text{-type}$ MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 ${\rm MIKC}^{{\rm C}}\text{-type}$ genes. We report here a complete analysis of this gene family regarding their phylogenetic relationships with homologous genes identified in other sequenced dicot genomes, their genome location, and gene structure and expression. The grapevine genes cluster in 13 subfamilies with their Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) counterparts. The lack of recent whole genome duplications in grapevine allows assigning the gene diversification processes observed within each subfamily either to an ancestral polyploidization event predating the divergence of those three species or to later duplication events within each lineage. Expression profiles of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in vegetative and reproductive organs as well as during flower and tendril development show conserved expression domains for specific subfamilies but also reflect characteristic features of grapevine development. Expression analyses in latent buds and during flower development reveal common features previously described in other plant systems as well as possible new roles for members of some subfamilies during flowering transition. The analysis of ${\rm MIKC}^{{\rm C}}\text{-type}$ genes in grapevine helps in understanding the origin of gene diversification within each subfamily and provides the basis for functional analyses to uncover the role of these MADS box genes in grapevine development.</abstract><pub>American Society of Plant Biologists</pub><doi>10.1104/pp.108.131052</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2009-01, Vol.149 (1), p.354-369 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_jstor_primary_25594939 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Chromosomes Flower buds Flowering Flowers Genes Genome Analysis Genomes Inflorescences Meristems Plants Tendrils |
title | Genome-Wide Analysis of ${\rm MIKC}^{{\rm C}}\text{-Type}$ MADS Box Genes in Grapevine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20of%20$%7B%5Crm%20MIKC%7D%5E%7B%7B%5Crm%20C%7D%7D%5Ctext%7B-Type%7D$%20MADS%20Box%20Genes%20in%20Grapevine&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=D%C3%ADaz-Riquelme,%20Jos%C3%A9&rft.date=2009-01-01&rft.volume=149&rft.issue=1&rft.spage=354&rft.epage=369&rft.pages=354-369&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.108.131052&rft_dat=%3Cjstor%3E25594939%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25594939&rfr_iscdi=true |