Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models

We consider a class of input sampling plans, called permuted column sampling plans, that are popular in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube sampling, support estimation of first-order sensitivity coefficients, but these estimates are b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2008-05, Vol.50 (2), p.205-215
Hauptverfasser: Morris, Max D., Moore, Leslie M., McKay, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 2
container_start_page 205
container_title Technometrics
container_volume 50
creator Morris, Max D.
Moore, Leslie M.
McKay, Michael D.
description We consider a class of input sampling plans, called permuted column sampling plans, that are popular in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube sampling, support estimation of first-order sensitivity coefficients, but these estimates are biased when the usual practice of random column permutation is used to construct the sampling arrays. Deterministic column permutations may be used to eliminate this estimation bias. We prove that any permuted column sampling plan that eliminates estimation bias, using the smallest possible number of runs in each array and containing the largest possible number of arrays, can be characterized by an orthogonal array of strength 2. We derive approximate standard errors of the first-order sensitivityindices for this sampling plan. We give two examples demonstrating the sampling plan, behavior of the estimates, and standard errors, along with comparative results based on other approaches.
doi_str_mv 10.1198/004017008000000208
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_25471460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25471460</jstor_id><sourcerecordid>25471460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a96cc4f7a51a8a00fdc7a70f233044c35d09b737837c6e9e181122074bf281653</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKf_gCAEwWP1S9I26cHDGE4FZQfduWRpsmV0zUwypf-9nZ16EPwu3-H93uPxEDoncE1IIW4AUiAcQMDXURAHaEAyxhPKKTtEgx2QdER-jE5CWAEQRgUfoMks2GaBpz4u3cI1ssYj72UbsG1wXGr8optgo323scWjTm6DDdgZPHbrzTZqj59dpetwio6MrIM-2_8hmk3uXscPydP0_nE8ekoUExATWeRKpYbLjEghAUyluORgKGOQpoplFRRzzrhgXOW60EQQQinwdG6oIHnGhuiyz91497bVIZYrt_Vdr1BSwnJOBSMdRHtIeReC16bceLuWvi0JlLu5yr9zdaarfbIMStbGy0bZ8OOkwETR9eq4i55bhej8r56lnKQ5dPptr9vGOL-WH87XVRllWzv_Hcr-6fEJIs6Eaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213672831</pqid></control><display><type>article</type><title>Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Morris, Max D. ; Moore, Leslie M. ; McKay, Michael D.</creator><creatorcontrib>Morris, Max D. ; Moore, Leslie M. ; McKay, Michael D.</creatorcontrib><description>We consider a class of input sampling plans, called permuted column sampling plans, that are popular in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube sampling, support estimation of first-order sensitivity coefficients, but these estimates are biased when the usual practice of random column permutation is used to construct the sampling arrays. Deterministic column permutations may be used to eliminate this estimation bias. We prove that any permuted column sampling plan that eliminates estimation bias, using the smallest possible number of runs in each array and containing the largest possible number of arrays, can be characterized by an orthogonal array of strength 2. We derive approximate standard errors of the first-order sensitivityindices for this sampling plan. We give two examples demonstrating the sampling plan, behavior of the estimates, and standard errors, along with comparative results based on other approaches.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/004017008000000208</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis</publisher><subject>Arrays ; Bias ; Computer experiment ; Computer modeling ; Environment modeling ; Estimates ; Estimation bias ; Exact sciences and technology ; Experimental design ; First-order variance coefficient ; Mathematical functions ; Mathematics ; Modeling ; Probability and statistics ; Random sampling ; Replicated Latin hypercube sample ; Sample variance ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Sensitivity analysis ; Standard error ; Statistical variance ; Statistics ; Studies ; Uncertainty analysis</subject><ispartof>Technometrics, 2008-05, Vol.50 (2), p.205-215</ispartof><rights>2008 American Statistical Association and the American Society for Quality 2008</rights><rights>Copyright 2008 The American Statistical Association and The American Society for Quality</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Quality May 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a96cc4f7a51a8a00fdc7a70f233044c35d09b737837c6e9e181122074bf281653</citedby><cites>FETCH-LOGICAL-c380t-a96cc4f7a51a8a00fdc7a70f233044c35d09b737837c6e9e181122074bf281653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25471460$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25471460$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20389783$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Max D.</creatorcontrib><creatorcontrib>Moore, Leslie M.</creatorcontrib><creatorcontrib>McKay, Michael D.</creatorcontrib><title>Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models</title><title>Technometrics</title><description>We consider a class of input sampling plans, called permuted column sampling plans, that are popular in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube sampling, support estimation of first-order sensitivity coefficients, but these estimates are biased when the usual practice of random column permutation is used to construct the sampling arrays. Deterministic column permutations may be used to eliminate this estimation bias. We prove that any permuted column sampling plan that eliminates estimation bias, using the smallest possible number of runs in each array and containing the largest possible number of arrays, can be characterized by an orthogonal array of strength 2. We derive approximate standard errors of the first-order sensitivityindices for this sampling plan. We give two examples demonstrating the sampling plan, behavior of the estimates, and standard errors, along with comparative results based on other approaches.</description><subject>Arrays</subject><subject>Bias</subject><subject>Computer experiment</subject><subject>Computer modeling</subject><subject>Environment modeling</subject><subject>Estimates</subject><subject>Estimation bias</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>First-order variance coefficient</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Probability and statistics</subject><subject>Random sampling</subject><subject>Replicated Latin hypercube sample</subject><subject>Sample variance</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Sensitivity analysis</subject><subject>Standard error</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>Uncertainty analysis</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFLwzAYxYMoOKf_gCAEwWP1S9I26cHDGE4FZQfduWRpsmV0zUwypf-9nZ16EPwu3-H93uPxEDoncE1IIW4AUiAcQMDXURAHaEAyxhPKKTtEgx2QdER-jE5CWAEQRgUfoMks2GaBpz4u3cI1ssYj72UbsG1wXGr8optgo323scWjTm6DDdgZPHbrzTZqj59dpetwio6MrIM-2_8hmk3uXscPydP0_nE8ekoUExATWeRKpYbLjEghAUyluORgKGOQpoplFRRzzrhgXOW60EQQQinwdG6oIHnGhuiyz91497bVIZYrt_Vdr1BSwnJOBSMdRHtIeReC16bceLuWvi0JlLu5yr9zdaarfbIMStbGy0bZ8OOkwETR9eq4i55bhej8r56lnKQ5dPptr9vGOL-WH87XVRllWzv_Hcr-6fEJIs6Eaw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Morris, Max D.</creator><creator>Moore, Leslie M.</creator><creator>McKay, Michael D.</creator><general>Taylor &amp; Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080501</creationdate><title>Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models</title><author>Morris, Max D. ; Moore, Leslie M. ; McKay, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a96cc4f7a51a8a00fdc7a70f233044c35d09b737837c6e9e181122074bf281653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arrays</topic><topic>Bias</topic><topic>Computer experiment</topic><topic>Computer modeling</topic><topic>Environment modeling</topic><topic>Estimates</topic><topic>Estimation bias</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>First-order variance coefficient</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Probability and statistics</topic><topic>Random sampling</topic><topic>Replicated Latin hypercube sample</topic><topic>Sample variance</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Sensitivity analysis</topic><topic>Standard error</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Max D.</creatorcontrib><creatorcontrib>Moore, Leslie M.</creatorcontrib><creatorcontrib>McKay, Michael D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Max D.</au><au>Moore, Leslie M.</au><au>McKay, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models</atitle><jtitle>Technometrics</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>50</volume><issue>2</issue><spage>205</spage><epage>215</epage><pages>205-215</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>We consider a class of input sampling plans, called permuted column sampling plans, that are popular in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube sampling, support estimation of first-order sensitivity coefficients, but these estimates are biased when the usual practice of random column permutation is used to construct the sampling arrays. Deterministic column permutations may be used to eliminate this estimation bias. We prove that any permuted column sampling plan that eliminates estimation bias, using the smallest possible number of runs in each array and containing the largest possible number of arrays, can be characterized by an orthogonal array of strength 2. We derive approximate standard errors of the first-order sensitivityindices for this sampling plan. We give two examples demonstrating the sampling plan, behavior of the estimates, and standard errors, along with comparative results based on other approaches.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/004017008000000208</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2008-05, Vol.50 (2), p.205-215
issn 0040-1706
1537-2723
language eng
recordid cdi_jstor_primary_25471460
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Arrays
Bias
Computer experiment
Computer modeling
Environment modeling
Estimates
Estimation bias
Exact sciences and technology
Experimental design
First-order variance coefficient
Mathematical functions
Mathematics
Modeling
Probability and statistics
Random sampling
Replicated Latin hypercube sample
Sample variance
Sampling theory, sample surveys
Sciences and techniques of general use
Sensitivity analysis
Standard error
Statistical variance
Statistics
Studies
Uncertainty analysis
title Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Orthogonal%20Arrays%20in%20the%20Sensitivity%20Analysis%20of%20Computer%20Models&rft.jtitle=Technometrics&rft.au=Morris,%20Max%20D.&rft.date=2008-05-01&rft.volume=50&rft.issue=2&rft.spage=205&rft.epage=215&rft.pages=205-215&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/004017008000000208&rft_dat=%3Cjstor_cross%3E25471460%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213672831&rft_id=info:pmid/&rft_jstor_id=25471460&rfr_iscdi=true