Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth
The regenerative process in the pancreas is of particular interest because diabetes results from an inadequate number of insulin-producing beta cells and pancreatic cancer may arise from the uncontrolled growth of progenitor/stem cells. Continued and substantial growth of islet tissue occurs after b...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (50), p.19915-19919 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19919 |
---|---|
container_issue | 50 |
container_start_page | 19915 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Inada, Akari Nienaber, Cameron Katsuta, Hitoshi Fujitani, Yoshio Levine, Jared Morita, Rina Sharma, Arun Bonner-Weir, Susan |
description | The regenerative process in the pancreas is of particular interest because diabetes results from an inadequate number of insulin-producing beta cells and pancreatic cancer may arise from the uncontrolled growth of progenitor/stem cells. Continued and substantial growth of islet tissue occurs after birth in rodents and humans, with additional compensatory growth in response to increased demand. In rodents there is clear evidence of pancreatic regeneration after some types of injury, with proliferation of preexisting differentiated cell types accounting for some replacement. Additionally, neogenesis or the budding of new islet cells from pancreatic ducts has been reported, but the existence and identity of a progenitor cell have been debated. We hypothesized that the progenitor cells are duct epithelial cells that after replication undergo a regression to a less differentiated state and then can form new endocrine and exocrine pancreas. To directly test whether ductal cells serve as pancreatic progenitors after birth and give rise to new islets, we generated transgenic mice expressing human carbonic anhydrase II (CAII) promoter: Cre recombinase (Cre) or inducible CreERTM to cross with ROSA26 loxP-Stop-loxP LacZ reporter mice. We show that CAII-expressing cells within the pancreas act as progenitors that give rise to both new islets and acini normally after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor of all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes. |
doi_str_mv | 10.1073/pnas.0805803105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_25465748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465748</jstor_id><sourcerecordid>25465748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-ffd77e206ee66befbea3169b6f26e88f0f375401511d3dbee9d8bf88179327433</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoiFw5gSsOCBx2NYfa699qYQiPiJV4gA9W97dceJoYwfbqdp_j1dZNcCFk2XPM49m_CL0muBLglt2dfAmXWKJucSMYP4ELQhWpBaNwk_RAmPa1rKhzQV6kdIOY6wK-BxdEIU5paxdoLwysQve9ZXx24chmgTVel0fQnLZ3UF1ML6PYHIBehjHVJlYHmPYgHc5xFTZEKsu5G0Ffgh9dB6Kaajgfr7MgtJoMxTUxbx9iZ5ZMyZ4NZ9LdPvl88_Vt_rm-9f16tNN3XOpcm3t0LZAsQAQogPbgWFEqE5YKkBKiy1reYMJJ2RgQwegBtlZKUmrGG0bxpbo-uQ9HLs9DD34HM2oD9HtTXzQwTj9d8W7rd6EO00FblQxLNGHWRDDryOkrPcuTf9gPIRj0kJJpcqnFvD9P-AuHKMvy2mKCZO0DFqgqxPUx5BSBPs4CcF6ilNPcepznKXj7Z8LnPk5vwJ8nIGp86zjmhelUoRrexzHDPe5sNV_2IK8OSG7VMJ9ZChvBG8bWervTnVrgjab6JK-_TEtWEJoiRSE_QbPCcm6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201382754</pqid></control><display><type>article</type><title>Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Inada, Akari ; Nienaber, Cameron ; Katsuta, Hitoshi ; Fujitani, Yoshio ; Levine, Jared ; Morita, Rina ; Sharma, Arun ; Bonner-Weir, Susan</creator><creatorcontrib>Inada, Akari ; Nienaber, Cameron ; Katsuta, Hitoshi ; Fujitani, Yoshio ; Levine, Jared ; Morita, Rina ; Sharma, Arun ; Bonner-Weir, Susan</creatorcontrib><description>The regenerative process in the pancreas is of particular interest because diabetes results from an inadequate number of insulin-producing beta cells and pancreatic cancer may arise from the uncontrolled growth of progenitor/stem cells. Continued and substantial growth of islet tissue occurs after birth in rodents and humans, with additional compensatory growth in response to increased demand. In rodents there is clear evidence of pancreatic regeneration after some types of injury, with proliferation of preexisting differentiated cell types accounting for some replacement. Additionally, neogenesis or the budding of new islet cells from pancreatic ducts has been reported, but the existence and identity of a progenitor cell have been debated. We hypothesized that the progenitor cells are duct epithelial cells that after replication undergo a regression to a less differentiated state and then can form new endocrine and exocrine pancreas. To directly test whether ductal cells serve as pancreatic progenitors after birth and give rise to new islets, we generated transgenic mice expressing human carbonic anhydrase II (CAII) promoter: Cre recombinase (Cre) or inducible CreERTM to cross with ROSA26 loxP-Stop-loxP LacZ reporter mice. We show that CAII-expressing cells within the pancreas act as progenitors that give rise to both new islets and acini normally after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor of all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0805803105</identifier><identifier>PMID: 19052237</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acinar cells ; Alpha cells ; Animals ; Beta cells ; beta-Galactosidase - genetics ; Biological Sciences ; Carbonic Anhydrase II - biosynthesis ; Carbonic Anhydrase II - genetics ; Cell culture ; Cell growth ; Enzymes ; Epithelial Cells - cytology ; Epithelial Cells - enzymology ; Gene expression ; Genes, Reporter ; Humans ; Islets of Langerhans ; Islets of Langerhans - physiology ; Ligation ; Mice ; Mice, Transgenic ; Pancreas ; Pancreas, Exocrine - physiology ; Pancreatic cells ; Pancreatic Ducts - cytology ; Pancreatic Ducts - enzymology ; Progenitor cells ; Regeneration ; Rodents ; Stem Cell Transplantation ; Stem cells ; Stem Cells - cytology ; Stem Cells - enzymology ; Tissues ; Transgenes ; Type 1 diabetes mellitus ; Type 2 diabetes mellitus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19915-19919</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 16, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-ffd77e206ee66befbea3169b6f26e88f0f375401511d3dbee9d8bf88179327433</citedby><cites>FETCH-LOGICAL-c589t-ffd77e206ee66befbea3169b6f26e88f0f375401511d3dbee9d8bf88179327433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19052237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inada, Akari</creatorcontrib><creatorcontrib>Nienaber, Cameron</creatorcontrib><creatorcontrib>Katsuta, Hitoshi</creatorcontrib><creatorcontrib>Fujitani, Yoshio</creatorcontrib><creatorcontrib>Levine, Jared</creatorcontrib><creatorcontrib>Morita, Rina</creatorcontrib><creatorcontrib>Sharma, Arun</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><title>Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The regenerative process in the pancreas is of particular interest because diabetes results from an inadequate number of insulin-producing beta cells and pancreatic cancer may arise from the uncontrolled growth of progenitor/stem cells. Continued and substantial growth of islet tissue occurs after birth in rodents and humans, with additional compensatory growth in response to increased demand. In rodents there is clear evidence of pancreatic regeneration after some types of injury, with proliferation of preexisting differentiated cell types accounting for some replacement. Additionally, neogenesis or the budding of new islet cells from pancreatic ducts has been reported, but the existence and identity of a progenitor cell have been debated. We hypothesized that the progenitor cells are duct epithelial cells that after replication undergo a regression to a less differentiated state and then can form new endocrine and exocrine pancreas. To directly test whether ductal cells serve as pancreatic progenitors after birth and give rise to new islets, we generated transgenic mice expressing human carbonic anhydrase II (CAII) promoter: Cre recombinase (Cre) or inducible CreERTM to cross with ROSA26 loxP-Stop-loxP LacZ reporter mice. We show that CAII-expressing cells within the pancreas act as progenitors that give rise to both new islets and acini normally after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor of all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes.</description><subject>Acinar cells</subject><subject>Alpha cells</subject><subject>Animals</subject><subject>Beta cells</subject><subject>beta-Galactosidase - genetics</subject><subject>Biological Sciences</subject><subject>Carbonic Anhydrase II - biosynthesis</subject><subject>Carbonic Anhydrase II - genetics</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Enzymes</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - enzymology</subject><subject>Gene expression</subject><subject>Genes, Reporter</subject><subject>Humans</subject><subject>Islets of Langerhans</subject><subject>Islets of Langerhans - physiology</subject><subject>Ligation</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Pancreas</subject><subject>Pancreas, Exocrine - physiology</subject><subject>Pancreatic cells</subject><subject>Pancreatic Ducts - cytology</subject><subject>Pancreatic Ducts - enzymology</subject><subject>Progenitor cells</subject><subject>Regeneration</subject><subject>Rodents</subject><subject>Stem Cell Transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - enzymology</subject><subject>Tissues</subject><subject>Transgenes</subject><subject>Type 1 diabetes mellitus</subject><subject>Type 2 diabetes mellitus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EoiFw5gSsOCBx2NYfa699qYQiPiJV4gA9W97dceJoYwfbqdp_j1dZNcCFk2XPM49m_CL0muBLglt2dfAmXWKJucSMYP4ELQhWpBaNwk_RAmPa1rKhzQV6kdIOY6wK-BxdEIU5paxdoLwysQve9ZXx24chmgTVel0fQnLZ3UF1ML6PYHIBehjHVJlYHmPYgHc5xFTZEKsu5G0Ffgh9dB6Kaajgfr7MgtJoMxTUxbx9iZ5ZMyZ4NZ9LdPvl88_Vt_rm-9f16tNN3XOpcm3t0LZAsQAQogPbgWFEqE5YKkBKiy1reYMJJ2RgQwegBtlZKUmrGG0bxpbo-uQ9HLs9DD34HM2oD9HtTXzQwTj9d8W7rd6EO00FblQxLNGHWRDDryOkrPcuTf9gPIRj0kJJpcqnFvD9P-AuHKMvy2mKCZO0DFqgqxPUx5BSBPs4CcF6ilNPcepznKXj7Z8LnPk5vwJ8nIGp86zjmhelUoRrexzHDPe5sNV_2IK8OSG7VMJ9ZChvBG8bWervTnVrgjab6JK-_TEtWEJoiRSE_QbPCcm6</recordid><startdate>20081216</startdate><enddate>20081216</enddate><creator>Inada, Akari</creator><creator>Nienaber, Cameron</creator><creator>Katsuta, Hitoshi</creator><creator>Fujitani, Yoshio</creator><creator>Levine, Jared</creator><creator>Morita, Rina</creator><creator>Sharma, Arun</creator><creator>Bonner-Weir, Susan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081216</creationdate><title>Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth</title><author>Inada, Akari ; Nienaber, Cameron ; Katsuta, Hitoshi ; Fujitani, Yoshio ; Levine, Jared ; Morita, Rina ; Sharma, Arun ; Bonner-Weir, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-ffd77e206ee66befbea3169b6f26e88f0f375401511d3dbee9d8bf88179327433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acinar cells</topic><topic>Alpha cells</topic><topic>Animals</topic><topic>Beta cells</topic><topic>beta-Galactosidase - genetics</topic><topic>Biological Sciences</topic><topic>Carbonic Anhydrase II - biosynthesis</topic><topic>Carbonic Anhydrase II - genetics</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Enzymes</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - enzymology</topic><topic>Gene expression</topic><topic>Genes, Reporter</topic><topic>Humans</topic><topic>Islets of Langerhans</topic><topic>Islets of Langerhans - physiology</topic><topic>Ligation</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Pancreas</topic><topic>Pancreas, Exocrine - physiology</topic><topic>Pancreatic cells</topic><topic>Pancreatic Ducts - cytology</topic><topic>Pancreatic Ducts - enzymology</topic><topic>Progenitor cells</topic><topic>Regeneration</topic><topic>Rodents</topic><topic>Stem Cell Transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - enzymology</topic><topic>Tissues</topic><topic>Transgenes</topic><topic>Type 1 diabetes mellitus</topic><topic>Type 2 diabetes mellitus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inada, Akari</creatorcontrib><creatorcontrib>Nienaber, Cameron</creatorcontrib><creatorcontrib>Katsuta, Hitoshi</creatorcontrib><creatorcontrib>Fujitani, Yoshio</creatorcontrib><creatorcontrib>Levine, Jared</creatorcontrib><creatorcontrib>Morita, Rina</creatorcontrib><creatorcontrib>Sharma, Arun</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inada, Akari</au><au>Nienaber, Cameron</au><au>Katsuta, Hitoshi</au><au>Fujitani, Yoshio</au><au>Levine, Jared</au><au>Morita, Rina</au><au>Sharma, Arun</au><au>Bonner-Weir, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-16</date><risdate>2008</risdate><volume>105</volume><issue>50</issue><spage>19915</spage><epage>19919</epage><pages>19915-19919</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The regenerative process in the pancreas is of particular interest because diabetes results from an inadequate number of insulin-producing beta cells and pancreatic cancer may arise from the uncontrolled growth of progenitor/stem cells. Continued and substantial growth of islet tissue occurs after birth in rodents and humans, with additional compensatory growth in response to increased demand. In rodents there is clear evidence of pancreatic regeneration after some types of injury, with proliferation of preexisting differentiated cell types accounting for some replacement. Additionally, neogenesis or the budding of new islet cells from pancreatic ducts has been reported, but the existence and identity of a progenitor cell have been debated. We hypothesized that the progenitor cells are duct epithelial cells that after replication undergo a regression to a less differentiated state and then can form new endocrine and exocrine pancreas. To directly test whether ductal cells serve as pancreatic progenitors after birth and give rise to new islets, we generated transgenic mice expressing human carbonic anhydrase II (CAII) promoter: Cre recombinase (Cre) or inducible CreERTM to cross with ROSA26 loxP-Stop-loxP LacZ reporter mice. We show that CAII-expressing cells within the pancreas act as progenitors that give rise to both new islets and acini normally after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor of all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19052237</pmid><doi>10.1073/pnas.0805803105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19915-19919 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_25465748 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acinar cells Alpha cells Animals Beta cells beta-Galactosidase - genetics Biological Sciences Carbonic Anhydrase II - biosynthesis Carbonic Anhydrase II - genetics Cell culture Cell growth Enzymes Epithelial Cells - cytology Epithelial Cells - enzymology Gene expression Genes, Reporter Humans Islets of Langerhans Islets of Langerhans - physiology Ligation Mice Mice, Transgenic Pancreas Pancreas, Exocrine - physiology Pancreatic cells Pancreatic Ducts - cytology Pancreatic Ducts - enzymology Progenitor cells Regeneration Rodents Stem Cell Transplantation Stem cells Stem Cells - cytology Stem Cells - enzymology Tissues Transgenes Type 1 diabetes mellitus Type 2 diabetes mellitus |
title | Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonic%20anhydrase%20II-positive%20pancreatic%20cells%20are%20progenitors%20for%20both%20endocrine%20and%20exocrine%20pancreas%20after%20birth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Inada,%20Akari&rft.date=2008-12-16&rft.volume=105&rft.issue=50&rft.spage=19915&rft.epage=19919&rft.pages=19915-19919&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0805803105&rft_dat=%3Cjstor_cross%3E25465748%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201382754&rft_id=info:pmid/19052237&rft_jstor_id=25465748&rfr_iscdi=true |