Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle
The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell su...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-05, Vol.105 (21), p.7410-7415 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7415 |
---|---|
container_issue | 21 |
container_start_page | 7410 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Sendamarai, Anoop K Ohgami, Robert S Fleming, Mark D Lawrence, C. Martin |
description | The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane. |
doi_str_mv | 10.1073/pnas.0801318105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25462611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462611</jstor_id><sourcerecordid>25462611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBuAIgehSOHMCIg6IA9uOHSe2L0io4kuqxGHp2fI6k25WSbzYTtX9B_xsJt2oCxzgZEV-5o3Hnix7zuCMgSzOd4ONZ6CAFUwxKB9kCwaaLSuh4WG2AOByqQQXJ9mTGLcAoEsFj7MTpoQuNZeL7OcqhdGlMWDumzxtMO-xXwc7YL4L_rbtbZfTUvuANTkbMa99b9th4puxt0O-Smh3xbu7YtprBzukvMEQ2mPNnI1hnzbBt3We6BfxDg2527sOn2aPGttFfDavp9nVp4_fL74sL799_nrx4XLpKqbS0uGaaclLXq4tKlU7rBGcZZJzruuGvpuqggIKjVXVWEf3IpjVKJhYM-lscZq9P-TuxnWP5Ac6Smd2gVoNe-Nta_7cGdqNufY3hhe6kiAo4M0cEPyPEWMyfRsddh3dmR-jkSAVUf5fyEFxUWlJ8PVfcOvHMNAtkGGFlqIoCZ0fkAs-xoDN_ZEZmGkWzDQL5jgLVPHy906Pfn58Am9nMFUe40rDmZGCcpux6xLeJqKv_k1JvDiIbUw-3BNeiopXjB0TGuuNvQ5tNFerqT0aSgDBdPELOEze2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397435</pqid></control><display><type>article</type><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</creator><creatorcontrib>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</creatorcontrib><description>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0801318105</identifier><identifier>PMID: 18495927</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amides ; Antigens ; Binding Sites ; Biochemistry ; Biological Sciences ; Cancer ; Cell Cycle Proteins ; Cells ; Crystallography ; Dimerization ; Dimers ; Electrons ; Enzymes ; Erythrocytes ; Erythroid Precursor Cells - enzymology ; FMN Reductase - chemistry ; Humans ; Iron ; Membranes ; Molecular structure ; NADP - chemistry ; Oncogene Proteins - chemistry ; Oxidoreductases - chemistry ; P branes ; Protein Structure, Tertiary ; Proteins ; Static Electricity ; Transferrin - chemistry ; Transferrins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7410-7415</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 27, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</citedby><cites>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462611$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462611$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sendamarai, Anoop K</creatorcontrib><creatorcontrib>Ohgami, Robert S</creatorcontrib><creatorcontrib>Fleming, Mark D</creatorcontrib><creatorcontrib>Lawrence, C. Martin</creatorcontrib><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</description><subject>Amides</subject><subject>Antigens</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Cycle Proteins</subject><subject>Cells</subject><subject>Crystallography</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Erythroid Precursor Cells - enzymology</subject><subject>FMN Reductase - chemistry</subject><subject>Humans</subject><subject>Iron</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>NADP - chemistry</subject><subject>Oncogene Proteins - chemistry</subject><subject>Oxidoreductases - chemistry</subject><subject>P branes</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Static Electricity</subject><subject>Transferrin - chemistry</subject><subject>Transferrins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQBuAIgehSOHMCIg6IA9uOHSe2L0io4kuqxGHp2fI6k25WSbzYTtX9B_xsJt2oCxzgZEV-5o3Hnix7zuCMgSzOd4ONZ6CAFUwxKB9kCwaaLSuh4WG2AOByqQQXJ9mTGLcAoEsFj7MTpoQuNZeL7OcqhdGlMWDumzxtMO-xXwc7YL4L_rbtbZfTUvuANTkbMa99b9th4puxt0O-Smh3xbu7YtprBzukvMEQ2mPNnI1hnzbBt3We6BfxDg2527sOn2aPGttFfDavp9nVp4_fL74sL799_nrx4XLpKqbS0uGaaclLXq4tKlU7rBGcZZJzruuGvpuqggIKjVXVWEf3IpjVKJhYM-lscZq9P-TuxnWP5Ac6Smd2gVoNe-Nta_7cGdqNufY3hhe6kiAo4M0cEPyPEWMyfRsddh3dmR-jkSAVUf5fyEFxUWlJ8PVfcOvHMNAtkGGFlqIoCZ0fkAs-xoDN_ZEZmGkWzDQL5jgLVPHy906Pfn58Am9nMFUe40rDmZGCcpux6xLeJqKv_k1JvDiIbUw-3BNeiopXjB0TGuuNvQ5tNFerqT0aSgDBdPELOEze2A</recordid><startdate>20080527</startdate><enddate>20080527</enddate><creator>Sendamarai, Anoop K</creator><creator>Ohgami, Robert S</creator><creator>Fleming, Mark D</creator><creator>Lawrence, C. Martin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080527</creationdate><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><author>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amides</topic><topic>Antigens</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Cycle Proteins</topic><topic>Cells</topic><topic>Crystallography</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Erythroid Precursor Cells - enzymology</topic><topic>FMN Reductase - chemistry</topic><topic>Humans</topic><topic>Iron</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>NADP - chemistry</topic><topic>Oncogene Proteins - chemistry</topic><topic>Oxidoreductases - chemistry</topic><topic>P branes</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Static Electricity</topic><topic>Transferrin - chemistry</topic><topic>Transferrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sendamarai, Anoop K</creatorcontrib><creatorcontrib>Ohgami, Robert S</creatorcontrib><creatorcontrib>Fleming, Mark D</creatorcontrib><creatorcontrib>Lawrence, C. Martin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sendamarai, Anoop K</au><au>Ohgami, Robert S</au><au>Fleming, Mark D</au><au>Lawrence, C. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-05-27</date><risdate>2008</risdate><volume>105</volume><issue>21</issue><spage>7410</spage><epage>7415</epage><pages>7410-7415</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18495927</pmid><doi>10.1073/pnas.0801318105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7410-7415 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_25462611 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amides Antigens Binding Sites Biochemistry Biological Sciences Cancer Cell Cycle Proteins Cells Crystallography Dimerization Dimers Electrons Enzymes Erythrocytes Erythroid Precursor Cells - enzymology FMN Reductase - chemistry Humans Iron Membranes Molecular structure NADP - chemistry Oncogene Proteins - chemistry Oxidoreductases - chemistry P branes Protein Structure, Tertiary Proteins Static Electricity Transferrin - chemistry Transferrins |
title | Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20membrane%20proximal%20oxidoreductase%20domain%20of%20human%20Steap3,%20the%20dominant%20ferrireductase%20of%20the%20erythroid%20transferrin%20cycle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sendamarai,%20Anoop%20K&rft.date=2008-05-27&rft.volume=105&rft.issue=21&rft.spage=7410&rft.epage=7415&rft.pages=7410-7415&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0801318105&rft_dat=%3Cjstor_proqu%3E25462611%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397435&rft_id=info:pmid/18495927&rft_jstor_id=25462611&rfr_iscdi=true |