Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle

The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-05, Vol.105 (21), p.7410-7415
Hauptverfasser: Sendamarai, Anoop K, Ohgami, Robert S, Fleming, Mark D, Lawrence, C. Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7415
container_issue 21
container_start_page 7410
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Sendamarai, Anoop K
Ohgami, Robert S
Fleming, Mark D
Lawrence, C. Martin
description The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.
doi_str_mv 10.1073/pnas.0801318105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25462611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462611</jstor_id><sourcerecordid>25462611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBuAIgehSOHMCIg6IA9uOHSe2L0io4kuqxGHp2fI6k25WSbzYTtX9B_xsJt2oCxzgZEV-5o3Hnix7zuCMgSzOd4ONZ6CAFUwxKB9kCwaaLSuh4WG2AOByqQQXJ9mTGLcAoEsFj7MTpoQuNZeL7OcqhdGlMWDumzxtMO-xXwc7YL4L_rbtbZfTUvuANTkbMa99b9th4puxt0O-Smh3xbu7YtprBzukvMEQ2mPNnI1hnzbBt3We6BfxDg2527sOn2aPGttFfDavp9nVp4_fL74sL799_nrx4XLpKqbS0uGaaclLXq4tKlU7rBGcZZJzruuGvpuqggIKjVXVWEf3IpjVKJhYM-lscZq9P-TuxnWP5Ac6Smd2gVoNe-Nta_7cGdqNufY3hhe6kiAo4M0cEPyPEWMyfRsddh3dmR-jkSAVUf5fyEFxUWlJ8PVfcOvHMNAtkGGFlqIoCZ0fkAs-xoDN_ZEZmGkWzDQL5jgLVPHy906Pfn58Am9nMFUe40rDmZGCcpux6xLeJqKv_k1JvDiIbUw-3BNeiopXjB0TGuuNvQ5tNFerqT0aSgDBdPELOEze2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397435</pqid></control><display><type>article</type><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</creator><creatorcontrib>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</creatorcontrib><description>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0801318105</identifier><identifier>PMID: 18495927</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amides ; Antigens ; Binding Sites ; Biochemistry ; Biological Sciences ; Cancer ; Cell Cycle Proteins ; Cells ; Crystallography ; Dimerization ; Dimers ; Electrons ; Enzymes ; Erythrocytes ; Erythroid Precursor Cells - enzymology ; FMN Reductase - chemistry ; Humans ; Iron ; Membranes ; Molecular structure ; NADP - chemistry ; Oncogene Proteins - chemistry ; Oxidoreductases - chemistry ; P branes ; Protein Structure, Tertiary ; Proteins ; Static Electricity ; Transferrin - chemistry ; Transferrins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7410-7415</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 27, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</citedby><cites>FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462611$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462611$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sendamarai, Anoop K</creatorcontrib><creatorcontrib>Ohgami, Robert S</creatorcontrib><creatorcontrib>Fleming, Mark D</creatorcontrib><creatorcontrib>Lawrence, C. Martin</creatorcontrib><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</description><subject>Amides</subject><subject>Antigens</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Cycle Proteins</subject><subject>Cells</subject><subject>Crystallography</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Erythroid Precursor Cells - enzymology</subject><subject>FMN Reductase - chemistry</subject><subject>Humans</subject><subject>Iron</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>NADP - chemistry</subject><subject>Oncogene Proteins - chemistry</subject><subject>Oxidoreductases - chemistry</subject><subject>P branes</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Static Electricity</subject><subject>Transferrin - chemistry</subject><subject>Transferrins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQBuAIgehSOHMCIg6IA9uOHSe2L0io4kuqxGHp2fI6k25WSbzYTtX9B_xsJt2oCxzgZEV-5o3Hnix7zuCMgSzOd4ONZ6CAFUwxKB9kCwaaLSuh4WG2AOByqQQXJ9mTGLcAoEsFj7MTpoQuNZeL7OcqhdGlMWDumzxtMO-xXwc7YL4L_rbtbZfTUvuANTkbMa99b9th4puxt0O-Smh3xbu7YtprBzukvMEQ2mPNnI1hnzbBt3We6BfxDg2527sOn2aPGttFfDavp9nVp4_fL74sL799_nrx4XLpKqbS0uGaaclLXq4tKlU7rBGcZZJzruuGvpuqggIKjVXVWEf3IpjVKJhYM-lscZq9P-TuxnWP5Ac6Smd2gVoNe-Nta_7cGdqNufY3hhe6kiAo4M0cEPyPEWMyfRsddh3dmR-jkSAVUf5fyEFxUWlJ8PVfcOvHMNAtkGGFlqIoCZ0fkAs-xoDN_ZEZmGkWzDQL5jgLVPHy906Pfn58Am9nMFUe40rDmZGCcpux6xLeJqKv_k1JvDiIbUw-3BNeiopXjB0TGuuNvQ5tNFerqT0aSgDBdPELOEze2A</recordid><startdate>20080527</startdate><enddate>20080527</enddate><creator>Sendamarai, Anoop K</creator><creator>Ohgami, Robert S</creator><creator>Fleming, Mark D</creator><creator>Lawrence, C. Martin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080527</creationdate><title>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</title><author>Sendamarai, Anoop K ; Ohgami, Robert S ; Fleming, Mark D ; Lawrence, C. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-ceb1972525bae88dcede0ca172229dfdcef6603039e66fac31841a9e414b17ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amides</topic><topic>Antigens</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Cycle Proteins</topic><topic>Cells</topic><topic>Crystallography</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Erythroid Precursor Cells - enzymology</topic><topic>FMN Reductase - chemistry</topic><topic>Humans</topic><topic>Iron</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>NADP - chemistry</topic><topic>Oncogene Proteins - chemistry</topic><topic>Oxidoreductases - chemistry</topic><topic>P branes</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Static Electricity</topic><topic>Transferrin - chemistry</topic><topic>Transferrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sendamarai, Anoop K</creatorcontrib><creatorcontrib>Ohgami, Robert S</creatorcontrib><creatorcontrib>Fleming, Mark D</creatorcontrib><creatorcontrib>Lawrence, C. Martin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sendamarai, Anoop K</au><au>Ohgami, Robert S</au><au>Fleming, Mark D</au><au>Lawrence, C. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-05-27</date><risdate>2008</risdate><volume>105</volume><issue>21</issue><spage>7410</spage><epage>7415</epage><pages>7410-7415</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe²⁺ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18495927</pmid><doi>10.1073/pnas.0801318105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7410-7415
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_25462611
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amides
Antigens
Binding Sites
Biochemistry
Biological Sciences
Cancer
Cell Cycle Proteins
Cells
Crystallography
Dimerization
Dimers
Electrons
Enzymes
Erythrocytes
Erythroid Precursor Cells - enzymology
FMN Reductase - chemistry
Humans
Iron
Membranes
Molecular structure
NADP - chemistry
Oncogene Proteins - chemistry
Oxidoreductases - chemistry
P branes
Protein Structure, Tertiary
Proteins
Static Electricity
Transferrin - chemistry
Transferrins
title Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20membrane%20proximal%20oxidoreductase%20domain%20of%20human%20Steap3,%20the%20dominant%20ferrireductase%20of%20the%20erythroid%20transferrin%20cycle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sendamarai,%20Anoop%20K&rft.date=2008-05-27&rft.volume=105&rft.issue=21&rft.spage=7410&rft.epage=7415&rft.pages=7410-7415&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0801318105&rft_dat=%3Cjstor_proqu%3E25462611%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397435&rft_id=info:pmid/18495927&rft_jstor_id=25462611&rfr_iscdi=true