Extreme accumulation of nucleotides in simulated hydrothermal pore systems

We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (22), p.9346-9351
Hauptverfasser: Baaske, Philipp, Weinert, Franz M, Duhr, Stefan, Lemke, Kono H, Russell, Michael J, Braun, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9351
container_issue 22
container_start_page 9346
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Baaske, Philipp
Weinert, Franz M
Duhr, Stefan
Lemke, Kono H
Russell, Michael J
Braun, Dieter
description We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.
doi_str_mv 10.1073/pnas.0609592104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_25427856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427856</jstor_id><sourcerecordid>25427856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw5gSsOCAuacff9gUJVeVLlThAz5bjtZuNdtfB9qLmv8dLogY40INleeY3z3rzEHqO4QyDpOfb0eYzEKC5JhjYA7TAoPFSMA0P0QKAyKVihJ2gJzlvACqn4DE6wZJpJoVcoC-XtyX5wTfWuWmYelu6ODYxNOPkeh9L1_rcdGOTu99N3zbrXZtiWfs02L7ZxuSbvMvFD_kpehRsn_2zw32Krj9cfr_4tLz6-vHzxfurpRVAylJq4hxbWaZXlqrASXAkEFHLIUgctMOStLUeVlRB6-pDetpSZRVnvMWCnqJ3e93ttBp86_xYku3NNnWDTTsTbWf-7ozd2tzEnwYrDUzLKvDmIJDij8nnYoYuO9_3dvRxykYC5xRLfi-ItdBcUlzB1_-AmzilsW7BEMAMV0v3QZQLruYvz_eQSzHn5MOdLwxmjtzMkZtj5HXi5Z_rOPKHjCvw9gDMk0c5ZggxmjJhwtT3xd-Wir76P1qJF3tik0tMdwjhjEjFxVEh2GjsTeqyuf422wOQqh5CfwGFgtMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356585</pqid></control><display><type>article</type><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</creator><creatorcontrib>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</creatorcontrib><description>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609592104</identifier><identifier>PMID: 17494767</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aspect ratio ; Biological Sciences ; Convection ; Diffusion ; DNA ; Evolution ; Fluids ; Free convection ; Geochemistry ; Heat ; Hot Temperature ; Membranes ; Mineralogy ; Models, Chemical ; Molecular evolution ; Molecules ; Nucleotides ; Nucleotides - chemistry ; Nucleotides - metabolism ; Origin of Life ; Petrology ; Physical Sciences ; Porosity ; Ribonucleic acid ; RNA ; Simulation ; Temperature gradients ; Thermophoresis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9346-9351</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 29, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</citedby><cites>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17494767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baaske, Philipp</creatorcontrib><creatorcontrib>Weinert, Franz M</creatorcontrib><creatorcontrib>Duhr, Stefan</creatorcontrib><creatorcontrib>Lemke, Kono H</creatorcontrib><creatorcontrib>Russell, Michael J</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</description><subject>Aspect ratio</subject><subject>Biological Sciences</subject><subject>Convection</subject><subject>Diffusion</subject><subject>DNA</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Geochemistry</subject><subject>Heat</subject><subject>Hot Temperature</subject><subject>Membranes</subject><subject>Mineralogy</subject><subject>Models, Chemical</subject><subject>Molecular evolution</subject><subject>Molecules</subject><subject>Nucleotides</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - metabolism</subject><subject>Origin of Life</subject><subject>Petrology</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Simulation</subject><subject>Temperature gradients</subject><subject>Thermophoresis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw5gSsOCAuacff9gUJVeVLlThAz5bjtZuNdtfB9qLmv8dLogY40INleeY3z3rzEHqO4QyDpOfb0eYzEKC5JhjYA7TAoPFSMA0P0QKAyKVihJ2gJzlvACqn4DE6wZJpJoVcoC-XtyX5wTfWuWmYelu6ODYxNOPkeh9L1_rcdGOTu99N3zbrXZtiWfs02L7ZxuSbvMvFD_kpehRsn_2zw32Krj9cfr_4tLz6-vHzxfurpRVAylJq4hxbWaZXlqrASXAkEFHLIUgctMOStLUeVlRB6-pDetpSZRVnvMWCnqJ3e93ttBp86_xYku3NNnWDTTsTbWf-7ozd2tzEnwYrDUzLKvDmIJDij8nnYoYuO9_3dvRxykYC5xRLfi-ItdBcUlzB1_-AmzilsW7BEMAMV0v3QZQLruYvz_eQSzHn5MOdLwxmjtzMkZtj5HXi5Z_rOPKHjCvw9gDMk0c5ZggxmjJhwtT3xd-Wir76P1qJF3tik0tMdwjhjEjFxVEh2GjsTeqyuf422wOQqh5CfwGFgtMY</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Baaske, Philipp</creator><creator>Weinert, Franz M</creator><creator>Duhr, Stefan</creator><creator>Lemke, Kono H</creator><creator>Russell, Michael J</creator><creator>Braun, Dieter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070529</creationdate><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><author>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aspect ratio</topic><topic>Biological Sciences</topic><topic>Convection</topic><topic>Diffusion</topic><topic>DNA</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Geochemistry</topic><topic>Heat</topic><topic>Hot Temperature</topic><topic>Membranes</topic><topic>Mineralogy</topic><topic>Models, Chemical</topic><topic>Molecular evolution</topic><topic>Molecules</topic><topic>Nucleotides</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - metabolism</topic><topic>Origin of Life</topic><topic>Petrology</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Simulation</topic><topic>Temperature gradients</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baaske, Philipp</creatorcontrib><creatorcontrib>Weinert, Franz M</creatorcontrib><creatorcontrib>Duhr, Stefan</creatorcontrib><creatorcontrib>Lemke, Kono H</creatorcontrib><creatorcontrib>Russell, Michael J</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baaske, Philipp</au><au>Weinert, Franz M</au><au>Duhr, Stefan</au><au>Lemke, Kono H</au><au>Russell, Michael J</au><au>Braun, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-29</date><risdate>2007</risdate><volume>104</volume><issue>22</issue><spage>9346</spage><epage>9351</epage><pages>9346-9351</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17494767</pmid><doi>10.1073/pnas.0609592104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9346-9351
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_25427856
source PubMed (Medline); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Aspect ratio
Biological Sciences
Convection
Diffusion
DNA
Evolution
Fluids
Free convection
Geochemistry
Heat
Hot Temperature
Membranes
Mineralogy
Models, Chemical
Molecular evolution
Molecules
Nucleotides
Nucleotides - chemistry
Nucleotides - metabolism
Origin of Life
Petrology
Physical Sciences
Porosity
Ribonucleic acid
RNA
Simulation
Temperature gradients
Thermophoresis
title Extreme accumulation of nucleotides in simulated hydrothermal pore systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20accumulation%20of%20nucleotides%20in%20simulated%20hydrothermal%20pore%20systems&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baaske,%20Philipp&rft.date=2007-05-29&rft.volume=104&rft.issue=22&rft.spage=9346&rft.epage=9351&rft.pages=9346-9351&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609592104&rft_dat=%3Cjstor_cross%3E25427856%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201356585&rft_id=info:pmid/17494767&rft_jstor_id=25427856&rfr_iscdi=true