Extreme accumulation of nucleotides in simulated hydrothermal pore systems
We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (22), p.9346-9351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9351 |
---|---|
container_issue | 22 |
container_start_page | 9346 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Baaske, Philipp Weinert, Franz M Duhr, Stefan Lemke, Kono H Russell, Michael J Braun, Dieter |
description | We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life. |
doi_str_mv | 10.1073/pnas.0609592104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_25427856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427856</jstor_id><sourcerecordid>25427856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw5gSsOCAuacff9gUJVeVLlThAz5bjtZuNdtfB9qLmv8dLogY40INleeY3z3rzEHqO4QyDpOfb0eYzEKC5JhjYA7TAoPFSMA0P0QKAyKVihJ2gJzlvACqn4DE6wZJpJoVcoC-XtyX5wTfWuWmYelu6ODYxNOPkeh9L1_rcdGOTu99N3zbrXZtiWfs02L7ZxuSbvMvFD_kpehRsn_2zw32Krj9cfr_4tLz6-vHzxfurpRVAylJq4hxbWaZXlqrASXAkEFHLIUgctMOStLUeVlRB6-pDetpSZRVnvMWCnqJ3e93ttBp86_xYku3NNnWDTTsTbWf-7ozd2tzEnwYrDUzLKvDmIJDij8nnYoYuO9_3dvRxykYC5xRLfi-ItdBcUlzB1_-AmzilsW7BEMAMV0v3QZQLruYvz_eQSzHn5MOdLwxmjtzMkZtj5HXi5Z_rOPKHjCvw9gDMk0c5ZggxmjJhwtT3xd-Wir76P1qJF3tik0tMdwjhjEjFxVEh2GjsTeqyuf422wOQqh5CfwGFgtMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356585</pqid></control><display><type>article</type><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</creator><creatorcontrib>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</creatorcontrib><description>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609592104</identifier><identifier>PMID: 17494767</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aspect ratio ; Biological Sciences ; Convection ; Diffusion ; DNA ; Evolution ; Fluids ; Free convection ; Geochemistry ; Heat ; Hot Temperature ; Membranes ; Mineralogy ; Models, Chemical ; Molecular evolution ; Molecules ; Nucleotides ; Nucleotides - chemistry ; Nucleotides - metabolism ; Origin of Life ; Petrology ; Physical Sciences ; Porosity ; Ribonucleic acid ; RNA ; Simulation ; Temperature gradients ; Thermophoresis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9346-9351</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 29, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</citedby><cites>FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17494767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baaske, Philipp</creatorcontrib><creatorcontrib>Weinert, Franz M</creatorcontrib><creatorcontrib>Duhr, Stefan</creatorcontrib><creatorcontrib>Lemke, Kono H</creatorcontrib><creatorcontrib>Russell, Michael J</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</description><subject>Aspect ratio</subject><subject>Biological Sciences</subject><subject>Convection</subject><subject>Diffusion</subject><subject>DNA</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Geochemistry</subject><subject>Heat</subject><subject>Hot Temperature</subject><subject>Membranes</subject><subject>Mineralogy</subject><subject>Models, Chemical</subject><subject>Molecular evolution</subject><subject>Molecules</subject><subject>Nucleotides</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - metabolism</subject><subject>Origin of Life</subject><subject>Petrology</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Simulation</subject><subject>Temperature gradients</subject><subject>Thermophoresis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw5gSsOCAuacff9gUJVeVLlThAz5bjtZuNdtfB9qLmv8dLogY40INleeY3z3rzEHqO4QyDpOfb0eYzEKC5JhjYA7TAoPFSMA0P0QKAyKVihJ2gJzlvACqn4DE6wZJpJoVcoC-XtyX5wTfWuWmYelu6ODYxNOPkeh9L1_rcdGOTu99N3zbrXZtiWfs02L7ZxuSbvMvFD_kpehRsn_2zw32Krj9cfr_4tLz6-vHzxfurpRVAylJq4hxbWaZXlqrASXAkEFHLIUgctMOStLUeVlRB6-pDetpSZRVnvMWCnqJ3e93ttBp86_xYku3NNnWDTTsTbWf-7ozd2tzEnwYrDUzLKvDmIJDij8nnYoYuO9_3dvRxykYC5xRLfi-ItdBcUlzB1_-AmzilsW7BEMAMV0v3QZQLruYvz_eQSzHn5MOdLwxmjtzMkZtj5HXi5Z_rOPKHjCvw9gDMk0c5ZggxmjJhwtT3xd-Wir76P1qJF3tik0tMdwjhjEjFxVEh2GjsTeqyuf422wOQqh5CfwGFgtMY</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Baaske, Philipp</creator><creator>Weinert, Franz M</creator><creator>Duhr, Stefan</creator><creator>Lemke, Kono H</creator><creator>Russell, Michael J</creator><creator>Braun, Dieter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070529</creationdate><title>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</title><author>Baaske, Philipp ; Weinert, Franz M ; Duhr, Stefan ; Lemke, Kono H ; Russell, Michael J ; Braun, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a602t-792cc4ba49ba38f52fc2f26792ff71f9c172d8f5fb380dc72d7e3d38a8545d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aspect ratio</topic><topic>Biological Sciences</topic><topic>Convection</topic><topic>Diffusion</topic><topic>DNA</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Geochemistry</topic><topic>Heat</topic><topic>Hot Temperature</topic><topic>Membranes</topic><topic>Mineralogy</topic><topic>Models, Chemical</topic><topic>Molecular evolution</topic><topic>Molecules</topic><topic>Nucleotides</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - metabolism</topic><topic>Origin of Life</topic><topic>Petrology</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Simulation</topic><topic>Temperature gradients</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baaske, Philipp</creatorcontrib><creatorcontrib>Weinert, Franz M</creatorcontrib><creatorcontrib>Duhr, Stefan</creatorcontrib><creatorcontrib>Lemke, Kono H</creatorcontrib><creatorcontrib>Russell, Michael J</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baaske, Philipp</au><au>Weinert, Franz M</au><au>Duhr, Stefan</au><au>Lemke, Kono H</au><au>Russell, Michael J</au><au>Braun, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme accumulation of nucleotides in simulated hydrothermal pore systems</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-29</date><risdate>2007</risdate><volume>104</volume><issue>22</issue><spage>9346</spage><epage>9351</epage><pages>9346-9351</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10⁸-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17494767</pmid><doi>10.1073/pnas.0609592104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9346-9351 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_25427856 |
source | PubMed (Medline); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Aspect ratio Biological Sciences Convection Diffusion DNA Evolution Fluids Free convection Geochemistry Heat Hot Temperature Membranes Mineralogy Models, Chemical Molecular evolution Molecules Nucleotides Nucleotides - chemistry Nucleotides - metabolism Origin of Life Petrology Physical Sciences Porosity Ribonucleic acid RNA Simulation Temperature gradients Thermophoresis |
title | Extreme accumulation of nucleotides in simulated hydrothermal pore systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20accumulation%20of%20nucleotides%20in%20simulated%20hydrothermal%20pore%20systems&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baaske,%20Philipp&rft.date=2007-05-29&rft.volume=104&rft.issue=22&rft.spage=9346&rft.epage=9351&rft.pages=9346-9351&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609592104&rft_dat=%3Cjstor_cross%3E25427856%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201356585&rft_id=info:pmid/17494767&rft_jstor_id=25427856&rfr_iscdi=true |