Experimental study of impact oscillator with one-sided elastic constraint
In this paper, extensive experimental investigations of an impact oscillator with a one-sided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration sign...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2008-03, Vol.366 (1866), p.679-705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 1866 |
container_start_page | 679 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 366 |
creator | Ing, James Pavlovskaia, Ekaterina Wiercigroch, Marian Banerjee, Soumitro |
description | In this paper, extensive experimental investigations of an impact oscillator with a one-sided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration signal is used to effectively detect contacts with the secondary spring. The most typical recorded scenario is when a non-impacting periodic orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be stable, but in many cases it loses stability through grazing. Following such an event, the evolution of the attractor is governed by a complex interplay between smooth and non-smooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested through discontinuous transition from one orbit to another through boundary crisis. The stability of non-impacting and impacting period-1 orbits is then studied using a newly proposed experimental procedure. The results are compared with the predictions obtained from standard theoretical stability analysis and a good correspondence between them is shown for different stiffness ratios. A mathematical model of a damped impact oscillator with one-sided elastic constraint is used in the theoretical studies. |
doi_str_mv | 10.1098/rsta.2007.2122 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_25190717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25190717</jstor_id><sourcerecordid>25190717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-c7287f764ddd80a5b8ba367f42fbeb2104658a4165489289f573f2b042c36ec33</originalsourceid><addsrcrecordid>eNp9kctv1DAQxi0Eog-4cgPlxC2LX_HjhKAqpVXFQ4KKm-U4NuslGwfbUZv_Hm-zaukBLn5ovvnNzDcAvEBwhaAUb2LKeoUh5CuMMH4EDhHlqMaS4cflTRitG0h-HICjlDYQIsQa_BQcIC4px1AegvPTm9FGv7VD1n2V8tTNVXCV347a5Cok4_te5xCra5_XVRhsnXxnu8r2OmVvKhOGlKP2Q34GnjjdJ_t8fx-D7x9Ov518rC8_n52fvLusDZU014ZjwR1ntOs6AXXTilYTxh3FrrUtRpCyRmhaGqVCYiFdw4nDLaTYEGYNIcfg9cIdY_g92ZTV1idjS5uDDVNSHGICYSOKcLUITQwpRevUWAbVcVYIqp15amee2pmnduaVhFd78tRubXcv37tVBGQRxDCXEYPxNs9qE6Y4lO-_sS-XrE0qRt5RcYMk5IiXeL3Efcr25i6u4y_FOOGNuhJUfcHv-ddPF1cKFf3bRb_2P9fXPlr1oJ3b6mUtuaxUEcYUEuVgXCo39b0aO1cI8L-EMI-F8Xcu-QN6HL2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70230058</pqid></control><display><type>article</type><title>Experimental study of impact oscillator with one-sided elastic constraint</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics & Statistics</source><creator>Ing, James ; Pavlovskaia, Ekaterina ; Wiercigroch, Marian ; Banerjee, Soumitro</creator><creatorcontrib>Ing, James ; Pavlovskaia, Ekaterina ; Wiercigroch, Marian ; Banerjee, Soumitro</creatorcontrib><description>In this paper, extensive experimental investigations of an impact oscillator with a one-sided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration signal is used to effectively detect contacts with the secondary spring. The most typical recorded scenario is when a non-impacting periodic orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be stable, but in many cases it loses stability through grazing. Following such an event, the evolution of the attractor is governed by a complex interplay between smooth and non-smooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested through discontinuous transition from one orbit to another through boundary crisis. The stability of non-impacting and impacting period-1 orbits is then studied using a newly proposed experimental procedure. The results are compared with the predictions obtained from standard theoretical stability analysis and a good correspondence between them is shown for different stiffness ratios. A mathematical model of a damped impact oscillator with one-sided elastic constraint is used in the theoretical studies.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2007.2122</identifier><identifier>PMID: 17947209</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Chaos theory ; Contrapuntal motion ; Experimental Chaos ; Grazing ; Impact Oscillator ; Jacobians ; Mass ; Oscillators ; Periodic orbits ; Phase plane ; Stability Of Limit Cycles ; Stiffness ; Trajectories</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2008-03, Vol.366 (1866), p.679-705</ispartof><rights>Copyright 2007 The Royal Society</rights><rights>2007 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-c7287f764ddd80a5b8ba367f42fbeb2104658a4165489289f573f2b042c36ec33</citedby><cites>FETCH-LOGICAL-c494t-c7287f764ddd80a5b8ba367f42fbeb2104658a4165489289f573f2b042c36ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25190717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25190717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17947209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ing, James</creatorcontrib><creatorcontrib>Pavlovskaia, Ekaterina</creatorcontrib><creatorcontrib>Wiercigroch, Marian</creatorcontrib><creatorcontrib>Banerjee, Soumitro</creatorcontrib><title>Experimental study of impact oscillator with one-sided elastic constraint</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>In this paper, extensive experimental investigations of an impact oscillator with a one-sided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration signal is used to effectively detect contacts with the secondary spring. The most typical recorded scenario is when a non-impacting periodic orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be stable, but in many cases it loses stability through grazing. Following such an event, the evolution of the attractor is governed by a complex interplay between smooth and non-smooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested through discontinuous transition from one orbit to another through boundary crisis. The stability of non-impacting and impacting period-1 orbits is then studied using a newly proposed experimental procedure. The results are compared with the predictions obtained from standard theoretical stability analysis and a good correspondence between them is shown for different stiffness ratios. A mathematical model of a damped impact oscillator with one-sided elastic constraint is used in the theoretical studies.</description><subject>Chaos theory</subject><subject>Contrapuntal motion</subject><subject>Experimental Chaos</subject><subject>Grazing</subject><subject>Impact Oscillator</subject><subject>Jacobians</subject><subject>Mass</subject><subject>Oscillators</subject><subject>Periodic orbits</subject><subject>Phase plane</subject><subject>Stability Of Limit Cycles</subject><subject>Stiffness</subject><subject>Trajectories</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kctv1DAQxi0Eog-4cgPlxC2LX_HjhKAqpVXFQ4KKm-U4NuslGwfbUZv_Hm-zaukBLn5ovvnNzDcAvEBwhaAUb2LKeoUh5CuMMH4EDhHlqMaS4cflTRitG0h-HICjlDYQIsQa_BQcIC4px1AegvPTm9FGv7VD1n2V8tTNVXCV347a5Cok4_te5xCra5_XVRhsnXxnu8r2OmVvKhOGlKP2Q34GnjjdJ_t8fx-D7x9Ov518rC8_n52fvLusDZU014ZjwR1ntOs6AXXTilYTxh3FrrUtRpCyRmhaGqVCYiFdw4nDLaTYEGYNIcfg9cIdY_g92ZTV1idjS5uDDVNSHGICYSOKcLUITQwpRevUWAbVcVYIqp15amee2pmnduaVhFd78tRubXcv37tVBGQRxDCXEYPxNs9qE6Y4lO-_sS-XrE0qRt5RcYMk5IiXeL3Efcr25i6u4y_FOOGNuhJUfcHv-ddPF1cKFf3bRb_2P9fXPlr1oJ3b6mUtuaxUEcYUEuVgXCo39b0aO1cI8L-EMI-F8Xcu-QN6HL2P</recordid><startdate>20080313</startdate><enddate>20080313</enddate><creator>Ing, James</creator><creator>Pavlovskaia, Ekaterina</creator><creator>Wiercigroch, Marian</creator><creator>Banerjee, Soumitro</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080313</creationdate><title>Experimental study of impact oscillator with one-sided elastic constraint</title><author>Ing, James ; Pavlovskaia, Ekaterina ; Wiercigroch, Marian ; Banerjee, Soumitro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-c7287f764ddd80a5b8ba367f42fbeb2104658a4165489289f573f2b042c36ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chaos theory</topic><topic>Contrapuntal motion</topic><topic>Experimental Chaos</topic><topic>Grazing</topic><topic>Impact Oscillator</topic><topic>Jacobians</topic><topic>Mass</topic><topic>Oscillators</topic><topic>Periodic orbits</topic><topic>Phase plane</topic><topic>Stability Of Limit Cycles</topic><topic>Stiffness</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ing, James</creatorcontrib><creatorcontrib>Pavlovskaia, Ekaterina</creatorcontrib><creatorcontrib>Wiercigroch, Marian</creatorcontrib><creatorcontrib>Banerjee, Soumitro</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ing, James</au><au>Pavlovskaia, Ekaterina</au><au>Wiercigroch, Marian</au><au>Banerjee, Soumitro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of impact oscillator with one-sided elastic constraint</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2008-03-13</date><risdate>2008</risdate><volume>366</volume><issue>1866</issue><spage>679</spage><epage>705</epage><pages>679-705</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>In this paper, extensive experimental investigations of an impact oscillator with a one-sided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration signal is used to effectively detect contacts with the secondary spring. The most typical recorded scenario is when a non-impacting periodic orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be stable, but in many cases it loses stability through grazing. Following such an event, the evolution of the attractor is governed by a complex interplay between smooth and non-smooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested through discontinuous transition from one orbit to another through boundary crisis. The stability of non-impacting and impacting period-1 orbits is then studied using a newly proposed experimental procedure. The results are compared with the predictions obtained from standard theoretical stability analysis and a good correspondence between them is shown for different stiffness ratios. A mathematical model of a damped impact oscillator with one-sided elastic constraint is used in the theoretical studies.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>17947209</pmid><doi>10.1098/rsta.2007.2122</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2008-03, Vol.366 (1866), p.679-705 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_25190717 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics |
subjects | Chaos theory Contrapuntal motion Experimental Chaos Grazing Impact Oscillator Jacobians Mass Oscillators Periodic orbits Phase plane Stability Of Limit Cycles Stiffness Trajectories |
title | Experimental study of impact oscillator with one-sided elastic constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20impact%20oscillator%20with%20one-sided%20elastic%20constraint&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ing,%20James&rft.date=2008-03-13&rft.volume=366&rft.issue=1866&rft.spage=679&rft.epage=705&rft.pages=679-705&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2007.2122&rft_dat=%3Cjstor_royal%3E25190717%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70230058&rft_id=info:pmid/17947209&rft_jstor_id=25190717&rfr_iscdi=true |