On the Integrality Ratio for the Asymmetric Traveling Salesman Problem
We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2006-05, Vol.31 (2), p.245-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 2 |
container_start_page | 245 |
container_title | Mathematics of operations research |
container_volume | 31 |
creator | Charikar, Moses Goemans, Michel X Karloff, Howard |
description | We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2. |
doi_str_mv | 10.1287/moor.1060.0191 |
format | Article |
fullrecord | <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_jstor_primary_25151722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A147216121</galeid><jstor_id>25151722</jstor_id><sourcerecordid>A147216121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMoOO7u1ZvQeBEPPZuk8zF9HBZXBxZW9gO8haSn0pOh01mTjDr_vWlbEWFAcghJ_d6rKh5CrwleErqSlz6EuCRY4CUmLXmGFoRTUXMmyXO0wI1gtRT8y0v0KqU9xoRLwhbo-nas8g6qzZihj3pw-Vjd6exCZUP8VVmno_eQo-uqh6i_weDGvrrXAySvx-pzDGYAf45eWD0kuPh9n6HH6w8PV5_qm9uPm6v1Td0x0eZ6xeW21R2jomsNsLYpM2AJ2_Kk2BojWmsoUANU0pZbiSmXppV8axgwbU1zht7Ovk8xfD1AymofDnEsLRUlVIgVFqRA9Qz1ZUrlRhty1F0PI5QFwwjWle81YZISQejEL0_w5WzBu-6k4P0_gsJk-JF7fUhJbe7vTpp3MaQUwaqn6LyOR0WwmnJTU25qyk1NuRXBm1mwT7kU_tCUE04kpX-3mwaNPv3f793M71y_--7ivOEk9DrvCtoQRRVlvPkJBi-v6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212668061</pqid></control><display><type>article</type><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</creator><creatorcontrib>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</creatorcontrib><description>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.1060.0191</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; approximation algorithm ; Approximation algorithms ; Approximation theory ; Approximations ; asymmetric traveling salesman problem ; ATSP ; Combinatorial optimization ; Held-Karp relaxation ; Heuristics ; Integral equations ; Integrality ; integrality ratio ; Linear programming ; Mathematical integrals ; Minimization of cost ; Optimization algorithms ; Ratios ; Studies ; Traveling salesman problem ; Vertices</subject><ispartof>Mathematics of operations research, 2006-05, Vol.31 (2), p.245-252</ispartof><rights>Copyright 2006 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2006 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</citedby><cites>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25151722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.1060.0191$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3691,27923,27924,58016,58020,58249,58253,62615</link.rule.ids></links><search><creatorcontrib>Charikar, Moses</creatorcontrib><creatorcontrib>Goemans, Michel X</creatorcontrib><creatorcontrib>Karloff, Howard</creatorcontrib><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><title>Mathematics of operations research</title><description>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>approximation algorithm</subject><subject>Approximation algorithms</subject><subject>Approximation theory</subject><subject>Approximations</subject><subject>asymmetric traveling salesman problem</subject><subject>ATSP</subject><subject>Combinatorial optimization</subject><subject>Held-Karp relaxation</subject><subject>Heuristics</subject><subject>Integral equations</subject><subject>Integrality</subject><subject>integrality ratio</subject><subject>Linear programming</subject><subject>Mathematical integrals</subject><subject>Minimization of cost</subject><subject>Optimization algorithms</subject><subject>Ratios</subject><subject>Studies</subject><subject>Traveling salesman problem</subject><subject>Vertices</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc2LFDEQxYMoOO7u1ZvQeBEPPZuk8zF9HBZXBxZW9gO8haSn0pOh01mTjDr_vWlbEWFAcghJ_d6rKh5CrwleErqSlz6EuCRY4CUmLXmGFoRTUXMmyXO0wI1gtRT8y0v0KqU9xoRLwhbo-nas8g6qzZihj3pw-Vjd6exCZUP8VVmno_eQo-uqh6i_weDGvrrXAySvx-pzDGYAf45eWD0kuPh9n6HH6w8PV5_qm9uPm6v1Td0x0eZ6xeW21R2jomsNsLYpM2AJ2_Kk2BojWmsoUANU0pZbiSmXppV8axgwbU1zht7Ovk8xfD1AymofDnEsLRUlVIgVFqRA9Qz1ZUrlRhty1F0PI5QFwwjWle81YZISQejEL0_w5WzBu-6k4P0_gsJk-JF7fUhJbe7vTpp3MaQUwaqn6LyOR0WwmnJTU25qyk1NuRXBm1mwT7kU_tCUE04kpX-3mwaNPv3f793M71y_--7ivOEk9DrvCtoQRRVlvPkJBi-v6Q</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Charikar, Moses</creator><creator>Goemans, Michel X</creator><creator>Karloff, Howard</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20060501</creationdate><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><author>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>approximation algorithm</topic><topic>Approximation algorithms</topic><topic>Approximation theory</topic><topic>Approximations</topic><topic>asymmetric traveling salesman problem</topic><topic>ATSP</topic><topic>Combinatorial optimization</topic><topic>Held-Karp relaxation</topic><topic>Heuristics</topic><topic>Integral equations</topic><topic>Integrality</topic><topic>integrality ratio</topic><topic>Linear programming</topic><topic>Mathematical integrals</topic><topic>Minimization of cost</topic><topic>Optimization algorithms</topic><topic>Ratios</topic><topic>Studies</topic><topic>Traveling salesman problem</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charikar, Moses</creatorcontrib><creatorcontrib>Goemans, Michel X</creatorcontrib><creatorcontrib>Karloff, Howard</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charikar, Moses</au><au>Goemans, Michel X</au><au>Karloff, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</atitle><jtitle>Mathematics of operations research</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>31</volume><issue>2</issue><spage>245</spage><epage>252</epage><pages>245-252</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.1060.0191</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2006-05, Vol.31 (2), p.245-252 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_jstor_primary_25151722 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Analysis approximation algorithm Approximation algorithms Approximation theory Approximations asymmetric traveling salesman problem ATSP Combinatorial optimization Held-Karp relaxation Heuristics Integral equations Integrality integrality ratio Linear programming Mathematical integrals Minimization of cost Optimization algorithms Ratios Studies Traveling salesman problem Vertices |
title | On the Integrality Ratio for the Asymmetric Traveling Salesman Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Integrality%20Ratio%20for%20the%20Asymmetric%20Traveling%20Salesman%20Problem&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Charikar,%20Moses&rft.date=2006-05-01&rft.volume=31&rft.issue=2&rft.spage=245&rft.epage=252&rft.pages=245-252&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.1060.0191&rft_dat=%3Cgale_jstor%3EA147216121%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212668061&rft_id=info:pmid/&rft_galeid=A147216121&rft_jstor_id=25151722&rfr_iscdi=true |