On the Integrality Ratio for the Asymmetric Traveling Salesman Problem

We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2006-05, Vol.31 (2), p.245-252
Hauptverfasser: Charikar, Moses, Goemans, Michel X, Karloff, Howard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 2
container_start_page 245
container_title Mathematics of operations research
container_volume 31
creator Charikar, Moses
Goemans, Michel X
Karloff, Howard
description We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.
doi_str_mv 10.1287/moor.1060.0191
format Article
fullrecord <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_jstor_primary_25151722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A147216121</galeid><jstor_id>25151722</jstor_id><sourcerecordid>A147216121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMoOO7u1ZvQeBEPPZuk8zF9HBZXBxZW9gO8haSn0pOh01mTjDr_vWlbEWFAcghJ_d6rKh5CrwleErqSlz6EuCRY4CUmLXmGFoRTUXMmyXO0wI1gtRT8y0v0KqU9xoRLwhbo-nas8g6qzZihj3pw-Vjd6exCZUP8VVmno_eQo-uqh6i_weDGvrrXAySvx-pzDGYAf45eWD0kuPh9n6HH6w8PV5_qm9uPm6v1Td0x0eZ6xeW21R2jomsNsLYpM2AJ2_Kk2BojWmsoUANU0pZbiSmXppV8axgwbU1zht7Ovk8xfD1AymofDnEsLRUlVIgVFqRA9Qz1ZUrlRhty1F0PI5QFwwjWle81YZISQejEL0_w5WzBu-6k4P0_gsJk-JF7fUhJbe7vTpp3MaQUwaqn6LyOR0WwmnJTU25qyk1NuRXBm1mwT7kU_tCUE04kpX-3mwaNPv3f793M71y_--7ivOEk9DrvCtoQRRVlvPkJBi-v6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212668061</pqid></control><display><type>article</type><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</creator><creatorcontrib>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</creatorcontrib><description>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.1060.0191</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; approximation algorithm ; Approximation algorithms ; Approximation theory ; Approximations ; asymmetric traveling salesman problem ; ATSP ; Combinatorial optimization ; Held-Karp relaxation ; Heuristics ; Integral equations ; Integrality ; integrality ratio ; Linear programming ; Mathematical integrals ; Minimization of cost ; Optimization algorithms ; Ratios ; Studies ; Traveling salesman problem ; Vertices</subject><ispartof>Mathematics of operations research, 2006-05, Vol.31 (2), p.245-252</ispartof><rights>Copyright 2006 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2006 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</citedby><cites>FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25151722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.1060.0191$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3691,27923,27924,58016,58020,58249,58253,62615</link.rule.ids></links><search><creatorcontrib>Charikar, Moses</creatorcontrib><creatorcontrib>Goemans, Michel X</creatorcontrib><creatorcontrib>Karloff, Howard</creatorcontrib><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><title>Mathematics of operations research</title><description>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>approximation algorithm</subject><subject>Approximation algorithms</subject><subject>Approximation theory</subject><subject>Approximations</subject><subject>asymmetric traveling salesman problem</subject><subject>ATSP</subject><subject>Combinatorial optimization</subject><subject>Held-Karp relaxation</subject><subject>Heuristics</subject><subject>Integral equations</subject><subject>Integrality</subject><subject>integrality ratio</subject><subject>Linear programming</subject><subject>Mathematical integrals</subject><subject>Minimization of cost</subject><subject>Optimization algorithms</subject><subject>Ratios</subject><subject>Studies</subject><subject>Traveling salesman problem</subject><subject>Vertices</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc2LFDEQxYMoOO7u1ZvQeBEPPZuk8zF9HBZXBxZW9gO8haSn0pOh01mTjDr_vWlbEWFAcghJ_d6rKh5CrwleErqSlz6EuCRY4CUmLXmGFoRTUXMmyXO0wI1gtRT8y0v0KqU9xoRLwhbo-nas8g6qzZihj3pw-Vjd6exCZUP8VVmno_eQo-uqh6i_weDGvrrXAySvx-pzDGYAf45eWD0kuPh9n6HH6w8PV5_qm9uPm6v1Td0x0eZ6xeW21R2jomsNsLYpM2AJ2_Kk2BojWmsoUANU0pZbiSmXppV8axgwbU1zht7Ovk8xfD1AymofDnEsLRUlVIgVFqRA9Qz1ZUrlRhty1F0PI5QFwwjWle81YZISQejEL0_w5WzBu-6k4P0_gsJk-JF7fUhJbe7vTpp3MaQUwaqn6LyOR0WwmnJTU25qyk1NuRXBm1mwT7kU_tCUE04kpX-3mwaNPv3f793M71y_--7ivOEk9DrvCtoQRRVlvPkJBi-v6Q</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Charikar, Moses</creator><creator>Goemans, Michel X</creator><creator>Karloff, Howard</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20060501</creationdate><title>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</title><author>Charikar, Moses ; Goemans, Michel X ; Karloff, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-857d9ac426c9be49371407ed6c920fbb69fb2e2be27295f70257b975db4e4afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>approximation algorithm</topic><topic>Approximation algorithms</topic><topic>Approximation theory</topic><topic>Approximations</topic><topic>asymmetric traveling salesman problem</topic><topic>ATSP</topic><topic>Combinatorial optimization</topic><topic>Held-Karp relaxation</topic><topic>Heuristics</topic><topic>Integral equations</topic><topic>Integrality</topic><topic>integrality ratio</topic><topic>Linear programming</topic><topic>Mathematical integrals</topic><topic>Minimization of cost</topic><topic>Optimization algorithms</topic><topic>Ratios</topic><topic>Studies</topic><topic>Traveling salesman problem</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charikar, Moses</creatorcontrib><creatorcontrib>Goemans, Michel X</creatorcontrib><creatorcontrib>Karloff, Howard</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charikar, Moses</au><au>Goemans, Michel X</au><au>Karloff, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Integrality Ratio for the Asymmetric Traveling Salesman Problem</atitle><jtitle>Mathematics of operations research</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>31</volume><issue>2</issue><spage>245</spage><epage>252</epage><pages>245-252</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP with triangle inequality from 4/3 to 2.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.1060.0191</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2006-05, Vol.31 (2), p.245-252
issn 0364-765X
1526-5471
language eng
recordid cdi_jstor_primary_25151722
source INFORMS PubsOnLine; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Analysis
approximation algorithm
Approximation algorithms
Approximation theory
Approximations
asymmetric traveling salesman problem
ATSP
Combinatorial optimization
Held-Karp relaxation
Heuristics
Integral equations
Integrality
integrality ratio
Linear programming
Mathematical integrals
Minimization of cost
Optimization algorithms
Ratios
Studies
Traveling salesman problem
Vertices
title On the Integrality Ratio for the Asymmetric Traveling Salesman Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Integrality%20Ratio%20for%20the%20Asymmetric%20Traveling%20Salesman%20Problem&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Charikar,%20Moses&rft.date=2006-05-01&rft.volume=31&rft.issue=2&rft.spage=245&rft.epage=252&rft.pages=245-252&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.1060.0191&rft_dat=%3Cgale_jstor%3EA147216121%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212668061&rft_id=info:pmid/&rft_galeid=A147216121&rft_jstor_id=25151722&rfr_iscdi=true