Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions

Using a known recursive formula for the class one principal series$GL(n,{\Bbb R})$Whittaker function, we deduce a recursive formula for the multiple Mellin transform of this function. From the latter formula, we verify a conjecture of Goldfeld regarding the location of poles of our Mellin transform....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2001-02, Vol.123 (1), p.121-161
1. Verfasser: Stade, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 121
container_title American journal of mathematics
container_volume 123
creator Stade, Eric
description Using a known recursive formula for the class one principal series$GL(n,{\Bbb R})$Whittaker function, we deduce a recursive formula for the multiple Mellin transform of this function. From the latter formula, we verify a conjecture of Goldfeld regarding the location of poles of our Mellin transform. We further express the residues at these poles in terms of Mellin transforms of lower-rank Whittaker functions. Our next result concerns the simplification of our Mellin transform under a certain restriction on the transform parameter. We show, by applying a change of variable to our above result on poles of the Mellin transform, that the$GL(n,{\Bbb R})$transform reduces essentially to a$GL(n-1,{\Bbb R})$transform under this restriction. We then demonstrate that, under further restriction of the Mellin transform parameter, this Mellin transform in fact reduces to a ratio of products of gamma functions. Our result proves a conjecture of Bump and Friedberg that is motivated by the theory of exterior square automorphic L-functions. Finally, we show that a certain Mellin transform of a product of two Whittaker functions (one on$GL(n-1,{\Bbb R})$, and the other on$GL(n,{\Bbb R})$) reduces to a product of gamma functions. This last result verifies a conjecture of Bump regarding archimedean Euler factors of automorphic L-functions on$GL(n-1,{\Bbb R})\times GL(n,{\Bbb R})$.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25099048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25099048</jstor_id><sourcerecordid>25099048</sourcerecordid><originalsourceid>FETCH-jstor_primary_250990483</originalsourceid><addsrcrecordid>eNpjYuA0NLAw0DUzNjdnYeA0MDAw0rU0NjLnYOAqLs4Ccg3MDYw4GWJ9U3NyMvMUQooS84rT8otyixXy01RichNLMpLSqsF0Zkm1u09trQa6YF5trU51jFNSkkJQraaKpkI4ULAkMTu1SMGtNC-5JDM_r5iHgTUtMac4lRdKczPIurmGOHvoZhWX5BfFFxRl5iYWVcYbmRpYWhqYWBgTkgcAPEhBaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions</title><source>Jstor Complete Legacy</source><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Stade, Eric</creator><creatorcontrib>Stade, Eric</creatorcontrib><description>Using a known recursive formula for the class one principal series$GL(n,{\Bbb R})$Whittaker function, we deduce a recursive formula for the multiple Mellin transform of this function. From the latter formula, we verify a conjecture of Goldfeld regarding the location of poles of our Mellin transform. We further express the residues at these poles in terms of Mellin transforms of lower-rank Whittaker functions. Our next result concerns the simplification of our Mellin transform under a certain restriction on the transform parameter. We show, by applying a change of variable to our above result on poles of the Mellin transform, that the$GL(n,{\Bbb R})$transform reduces essentially to a$GL(n-1,{\Bbb R})$transform under this restriction. We then demonstrate that, under further restriction of the Mellin transform parameter, this Mellin transform in fact reduces to a ratio of products of gamma functions. Our result proves a conjecture of Bump and Friedberg that is motivated by the theory of exterior square automorphic L-functions. Finally, we show that a certain Mellin transform of a product of two Whittaker functions (one on$GL(n-1,{\Bbb R})$, and the other on$GL(n,{\Bbb R})$) reduces to a product of gamma functions. This last result verifies a conjecture of Bump regarding archimedean Euler factors of automorphic L-functions on$GL(n-1,{\Bbb R})\times GL(n,{\Bbb R})$.</description><identifier>ISSN: 0002-9327</identifier><identifier>EISSN: 1080-6377</identifier><language>eng</language><publisher>Johns Hopkins University Press</publisher><subject>Absolute convergence ; Coordinate systems ; Gamma function ; Induction assumption ; Integrands ; Mathematical induction ; Mathematics ; Mellin transforms ; Series convergence ; Whittaker functions</subject><ispartof>American journal of mathematics, 2001-02, Vol.123 (1), p.121-161</ispartof><rights>Copyright 2001 The Johns Hopkins University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25099048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25099048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Stade, Eric</creatorcontrib><title>Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions</title><title>American journal of mathematics</title><description>Using a known recursive formula for the class one principal series$GL(n,{\Bbb R})$Whittaker function, we deduce a recursive formula for the multiple Mellin transform of this function. From the latter formula, we verify a conjecture of Goldfeld regarding the location of poles of our Mellin transform. We further express the residues at these poles in terms of Mellin transforms of lower-rank Whittaker functions. Our next result concerns the simplification of our Mellin transform under a certain restriction on the transform parameter. We show, by applying a change of variable to our above result on poles of the Mellin transform, that the$GL(n,{\Bbb R})$transform reduces essentially to a$GL(n-1,{\Bbb R})$transform under this restriction. We then demonstrate that, under further restriction of the Mellin transform parameter, this Mellin transform in fact reduces to a ratio of products of gamma functions. Our result proves a conjecture of Bump and Friedberg that is motivated by the theory of exterior square automorphic L-functions. Finally, we show that a certain Mellin transform of a product of two Whittaker functions (one on$GL(n-1,{\Bbb R})$, and the other on$GL(n,{\Bbb R})$) reduces to a product of gamma functions. This last result verifies a conjecture of Bump regarding archimedean Euler factors of automorphic L-functions on$GL(n-1,{\Bbb R})\times GL(n,{\Bbb R})$.</description><subject>Absolute convergence</subject><subject>Coordinate systems</subject><subject>Gamma function</subject><subject>Induction assumption</subject><subject>Integrands</subject><subject>Mathematical induction</subject><subject>Mathematics</subject><subject>Mellin transforms</subject><subject>Series convergence</subject><subject>Whittaker functions</subject><issn>0002-9327</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLAw0DUzNjdnYeA0MDAw0rU0NjLnYOAqLs4Ccg3MDYw4GWJ9U3NyMvMUQooS84rT8otyixXy01RichNLMpLSqsF0Zkm1u09trQa6YF5trU51jFNSkkJQraaKpkI4ULAkMTu1SMGtNC-5JDM_r5iHgTUtMac4lRdKczPIurmGOHvoZhWX5BfFFxRl5iYWVcYbmRpYWhqYWBgTkgcAPEhBaA</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Stade, Eric</creator><general>Johns Hopkins University Press</general><scope/></search><sort><creationdate>20010201</creationdate><title>Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions</title><author>Stade, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250990483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absolute convergence</topic><topic>Coordinate systems</topic><topic>Gamma function</topic><topic>Induction assumption</topic><topic>Integrands</topic><topic>Mathematical induction</topic><topic>Mathematics</topic><topic>Mellin transforms</topic><topic>Series convergence</topic><topic>Whittaker functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stade, Eric</creatorcontrib><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stade, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions</atitle><jtitle>American journal of mathematics</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>123</volume><issue>1</issue><spage>121</spage><epage>161</epage><pages>121-161</pages><issn>0002-9327</issn><eissn>1080-6377</eissn><abstract>Using a known recursive formula for the class one principal series$GL(n,{\Bbb R})$Whittaker function, we deduce a recursive formula for the multiple Mellin transform of this function. From the latter formula, we verify a conjecture of Goldfeld regarding the location of poles of our Mellin transform. We further express the residues at these poles in terms of Mellin transforms of lower-rank Whittaker functions. Our next result concerns the simplification of our Mellin transform under a certain restriction on the transform parameter. We show, by applying a change of variable to our above result on poles of the Mellin transform, that the$GL(n,{\Bbb R})$transform reduces essentially to a$GL(n-1,{\Bbb R})$transform under this restriction. We then demonstrate that, under further restriction of the Mellin transform parameter, this Mellin transform in fact reduces to a ratio of products of gamma functions. Our result proves a conjecture of Bump and Friedberg that is motivated by the theory of exterior square automorphic L-functions. Finally, we show that a certain Mellin transform of a product of two Whittaker functions (one on$GL(n-1,{\Bbb R})$, and the other on$GL(n,{\Bbb R})$) reduces to a product of gamma functions. This last result verifies a conjecture of Bump regarding archimedean Euler factors of automorphic L-functions on$GL(n-1,{\Bbb R})\times GL(n,{\Bbb R})$.</abstract><pub>Johns Hopkins University Press</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2001-02, Vol.123 (1), p.121-161
issn 0002-9327
1080-6377
language eng
recordid cdi_jstor_primary_25099048
source Jstor Complete Legacy; Project MUSE - Premium Collection; JSTOR Mathematics & Statistics
subjects Absolute convergence
Coordinate systems
Gamma function
Induction assumption
Integrands
Mathematical induction
Mathematics
Mellin transforms
Series convergence
Whittaker functions
title Mellin Transforms of$\mathbf{\mathit{GL}}(\mathbf{\mathit{n}},{\Bbb R})$) Whittaker Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mellin%20Transforms%20of$%5Cmathbf%7B%5Cmathit%7BGL%7D%7D(%5Cmathbf%7B%5Cmathit%7Bn%7D%7D,%7B%5CBbb%20R%7D)$)%20Whittaker%20Functions&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Stade,%20Eric&rft.date=2001-02-01&rft.volume=123&rft.issue=1&rft.spage=121&rft.epage=161&rft.pages=121-161&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/&rft_dat=%3Cjstor%3E25099048%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25099048&rfr_iscdi=true