Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem

In a hypothesis testing problem, the classical p-values are often perceived as measurements of the degree of surprise in the data, relative to a hypothesized model. The classical p-values commonly provide a basis for rejection of a hypothesis or a model. In this paper, we develop prior predictive an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhyā (2003) 2003-02, Vol.65 (1), p.158-178
Hauptverfasser: Micheas, Athanasios C., Dey, Dipak K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 158
container_title Sankhyā (2003)
container_volume 65
creator Micheas, Athanasios C.
Dey, Dipak K.
description In a hypothesis testing problem, the classical p-values are often perceived as measurements of the degree of surprise in the data, relative to a hypothesized model. The classical p-values commonly provide a basis for rejection of a hypothesis or a model. In this paper, we develop prior predictive and posterior predictive p-values for one sided hypothesis testing for location parameter problems. We show that for many classes of prior distributions, the infimum of the prior predictive and posterior predictive p-values are equal to the classical p-value, for very general classes of distributions. The results are in spirit similar to that in Casella and Berger (1987) in terms of reconciliation of Bayesian and frequentist evidence. The results are used through many examples relating to the one sided testing problem for location parameter.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25053252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25053252</jstor_id><sourcerecordid>25053252</sourcerecordid><originalsourceid>FETCH-jstor_primary_250532523</originalsourceid><addsrcrecordid>eNqFi0sKwjAUALNQsH6OILwLBNKUWroWxYVgwOLGRYnNU19pE0mi4O0t4t7VMAwzYokoC8mLVZFO2DSEVghZpiJL2Fl5ch60NaBciPg15dFQE-mFoPhJd08MQBbiHeFgkR_JoIG9a3QkZ0Fpr3scVqgwRLK34XeXDvs5G191F3Dx44wtt5tqveNtiM7XD0-99u9a5iLPZC6zf_0DhNU9dw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem</title><source>JSTOR Mathematics &amp; Statistics</source><creator>Micheas, Athanasios C. ; Dey, Dipak K.</creator><creatorcontrib>Micheas, Athanasios C. ; Dey, Dipak K.</creatorcontrib><description>In a hypothesis testing problem, the classical p-values are often perceived as measurements of the degree of surprise in the data, relative to a hypothesized model. The classical p-values commonly provide a basis for rejection of a hypothesis or a model. In this paper, we develop prior predictive and posterior predictive p-values for one sided hypothesis testing for location parameter problems. We show that for many classes of prior distributions, the infimum of the prior predictive and posterior predictive p-values are equal to the classical p-value, for very general classes of distributions. The results are in spirit similar to that in Casella and Berger (1987) in terms of reconciliation of Bayesian and frequentist evidence. The results are used through many examples relating to the one sided testing problem for location parameter.</description><identifier>ISSN: 0972-7671</identifier><language>eng</language><publisher>Indian Statistical Institute</publisher><subject>Bayesian and Classical Test of Hypothesis ; Frequentism ; Hypothesis testing ; P values</subject><ispartof>Sankhyā (2003), 2003-02, Vol.65 (1), p.158-178</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25053252$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25053252$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57996,58229</link.rule.ids></links><search><creatorcontrib>Micheas, Athanasios C.</creatorcontrib><creatorcontrib>Dey, Dipak K.</creatorcontrib><title>Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem</title><title>Sankhyā (2003)</title><description>In a hypothesis testing problem, the classical p-values are often perceived as measurements of the degree of surprise in the data, relative to a hypothesized model. The classical p-values commonly provide a basis for rejection of a hypothesis or a model. In this paper, we develop prior predictive and posterior predictive p-values for one sided hypothesis testing for location parameter problems. We show that for many classes of prior distributions, the infimum of the prior predictive and posterior predictive p-values are equal to the classical p-value, for very general classes of distributions. The results are in spirit similar to that in Casella and Berger (1987) in terms of reconciliation of Bayesian and frequentist evidence. The results are used through many examples relating to the one sided testing problem for location parameter.</description><subject>Bayesian and Classical Test of Hypothesis</subject><subject>Frequentism</subject><subject>Hypothesis testing</subject><subject>P values</subject><issn>0972-7671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFi0sKwjAUALNQsH6OILwLBNKUWroWxYVgwOLGRYnNU19pE0mi4O0t4t7VMAwzYokoC8mLVZFO2DSEVghZpiJL2Fl5ch60NaBciPg15dFQE-mFoPhJd08MQBbiHeFgkR_JoIG9a3QkZ0Fpr3scVqgwRLK34XeXDvs5G191F3Dx44wtt5tqveNtiM7XD0-99u9a5iLPZC6zf_0DhNU9dw</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Micheas, Athanasios C.</creator><creator>Dey, Dipak K.</creator><general>Indian Statistical Institute</general><scope/></search><sort><creationdate>20030201</creationdate><title>Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem</title><author>Micheas, Athanasios C. ; Dey, Dipak K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250532523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bayesian and Classical Test of Hypothesis</topic><topic>Frequentism</topic><topic>Hypothesis testing</topic><topic>P values</topic><toplevel>online_resources</toplevel><creatorcontrib>Micheas, Athanasios C.</creatorcontrib><creatorcontrib>Dey, Dipak K.</creatorcontrib><jtitle>Sankhyā (2003)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micheas, Athanasios C.</au><au>Dey, Dipak K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem</atitle><jtitle>Sankhyā (2003)</jtitle><date>2003-02-01</date><risdate>2003</risdate><volume>65</volume><issue>1</issue><spage>158</spage><epage>178</epage><pages>158-178</pages><issn>0972-7671</issn><abstract>In a hypothesis testing problem, the classical p-values are often perceived as measurements of the degree of surprise in the data, relative to a hypothesized model. The classical p-values commonly provide a basis for rejection of a hypothesis or a model. In this paper, we develop prior predictive and posterior predictive p-values for one sided hypothesis testing for location parameter problems. We show that for many classes of prior distributions, the infimum of the prior predictive and posterior predictive p-values are equal to the classical p-value, for very general classes of distributions. The results are in spirit similar to that in Casella and Berger (1987) in terms of reconciliation of Bayesian and frequentist evidence. The results are used through many examples relating to the one sided testing problem for location parameter.</abstract><pub>Indian Statistical Institute</pub></addata></record>
fulltext fulltext
identifier ISSN: 0972-7671
ispartof Sankhyā (2003), 2003-02, Vol.65 (1), p.158-178
issn 0972-7671
language eng
recordid cdi_jstor_primary_25053252
source JSTOR Mathematics & Statistics
subjects Bayesian and Classical Test of Hypothesis
Frequentism
Hypothesis testing
P values
title Prior and Posterior Predictive P-Values in the One-Sided Location Parameter Testing Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prior%20and%20Posterior%20Predictive%20P-Values%20in%20the%20One-Sided%20Location%20Parameter%20Testing%20Problem&rft.jtitle=Sankhy%C4%81%20(2003)&rft.au=Micheas,%20Athanasios%20C.&rft.date=2003-02-01&rft.volume=65&rft.issue=1&rft.spage=158&rft.epage=178&rft.pages=158-178&rft.issn=0972-7671&rft_id=info:doi/&rft_dat=%3Cjstor%3E25053252%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25053252&rfr_iscdi=true