Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important
We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption...
Gespeichert in:
Veröffentlicht in: | Technometrics 2003-11, Vol.45 (4), p.352-360 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | 4 |
container_start_page | 352 |
container_title | Technometrics |
container_volume | 45 |
creator | Ke, Weiming Tang, Boxin |
description | We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs. |
doi_str_mv | 10.1198/004017003000000186 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25047092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25047092</jstor_id><sourcerecordid>25047092</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-ef91489423e65119ed1bf55887442add43adbf58d0acde205ad5d161975f26e83</originalsourceid><addsrcrecordid>eNotj0FLAzEQhXNQsFb_gCDk0Otqkk022eOyWl2oeGiLN0u6ma1ZutmSRETE_26qvss8vhke8xC6ouSG0lLdEsIJlYTk5FdUFSdocoRZosUZOg-hTzhnSk6QW8Ie2mjdbsZev4bs8D27g2B3LuB1SBRr_GSdHd4HXG3Bex3t6HDtbQR_dC9v4PByHACvPsZsrts4ety4tE02HQRcecDNcBh91C5eoNNO7wNc_s8pWs_vV_Vjtnh-aOpqkfVUiphBV1KuSs5yKEQqBYZuOyGUkpwzbQzPtUlAGaJbA4wIbYShBS2l6FgBKp-i67_cPqSHNgdvB-0_N0wQLknJ8h-iTVfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Ke, Weiming ; Tang, Boxin</creator><creatorcontrib>Ke, Weiming ; Tang, Boxin</creatorcontrib><description>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</description><identifier>ISSN: 0040-1706</identifier><identifier>DOI: 10.1198/004017003000000186</identifier><language>eng</language><publisher>The American Society for Quality Control and The American Statistical Association</publisher><subject>Estimation bias ; Experiment design ; Factorial design ; Industrial design ; Matrices ; Noise control ; Rationing ; Robust parameter design ; Vertices</subject><ispartof>Technometrics, 2003-11, Vol.45 (4), p.352-360</ispartof><rights>Copyright 2003 The American Statistical Association and the American Society for Quality</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25047092$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25047092$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Ke, Weiming</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><title>Technometrics</title><description>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</description><subject>Estimation bias</subject><subject>Experiment design</subject><subject>Factorial design</subject><subject>Industrial design</subject><subject>Matrices</subject><subject>Noise control</subject><subject>Rationing</subject><subject>Robust parameter design</subject><subject>Vertices</subject><issn>0040-1706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj0FLAzEQhXNQsFb_gCDk0Otqkk022eOyWl2oeGiLN0u6ma1ZutmSRETE_26qvss8vhke8xC6ouSG0lLdEsIJlYTk5FdUFSdocoRZosUZOg-hTzhnSk6QW8Ie2mjdbsZev4bs8D27g2B3LuB1SBRr_GSdHd4HXG3Bex3t6HDtbQR_dC9v4PByHACvPsZsrts4ety4tE02HQRcecDNcBh91C5eoNNO7wNc_s8pWs_vV_Vjtnh-aOpqkfVUiphBV1KuSs5yKEQqBYZuOyGUkpwzbQzPtUlAGaJbA4wIbYShBS2l6FgBKp-i67_cPqSHNgdvB-0_N0wQLknJ8h-iTVfQ</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Ke, Weiming</creator><creator>Tang, Boxin</creator><general>The American Society for Quality Control and The American Statistical Association</general><scope/></search><sort><creationdate>20031101</creationdate><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><author>Ke, Weiming ; Tang, Boxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-ef91489423e65119ed1bf55887442add43adbf58d0acde205ad5d161975f26e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Estimation bias</topic><topic>Experiment design</topic><topic>Factorial design</topic><topic>Industrial design</topic><topic>Matrices</topic><topic>Noise control</topic><topic>Rationing</topic><topic>Robust parameter design</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Weiming</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Weiming</au><au>Tang, Boxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</atitle><jtitle>Technometrics</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>45</volume><issue>4</issue><spage>352</spage><epage>360</epage><pages>352-360</pages><issn>0040-1706</issn><abstract>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</abstract><pub>The American Society for Quality Control and The American Statistical Association</pub><doi>10.1198/004017003000000186</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2003-11, Vol.45 (4), p.352-360 |
issn | 0040-1706 |
language | eng |
recordid | cdi_jstor_primary_25047092 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Estimation bias Experiment design Factorial design Industrial design Matrices Noise control Rationing Robust parameter design Vertices |
title | Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting$2%5E%7Bm-p%7D$Designs%20Using%20a%20Minimum%20Aberration%20Criterion%20When%20Some%20Two-Factor%20Interactions%20Are%20Important&rft.jtitle=Technometrics&rft.au=Ke,%20Weiming&rft.date=2003-11-01&rft.volume=45&rft.issue=4&rft.spage=352&rft.epage=360&rft.pages=352-360&rft.issn=0040-1706&rft_id=info:doi/10.1198/004017003000000186&rft_dat=%3Cjstor%3E25047092%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25047092&rfr_iscdi=true |