Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important

We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2003-11, Vol.45 (4), p.352-360
Hauptverfasser: Ke, Weiming, Tang, Boxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 4
container_start_page 352
container_title Technometrics
container_volume 45
creator Ke, Weiming
Tang, Boxin
description We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.
doi_str_mv 10.1198/004017003000000186
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25047092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25047092</jstor_id><sourcerecordid>25047092</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-ef91489423e65119ed1bf55887442add43adbf58d0acde205ad5d161975f26e83</originalsourceid><addsrcrecordid>eNotj0FLAzEQhXNQsFb_gCDk0Otqkk022eOyWl2oeGiLN0u6ma1ZutmSRETE_26qvss8vhke8xC6ouSG0lLdEsIJlYTk5FdUFSdocoRZosUZOg-hTzhnSk6QW8Ie2mjdbsZev4bs8D27g2B3LuB1SBRr_GSdHd4HXG3Bex3t6HDtbQR_dC9v4PByHACvPsZsrts4ety4tE02HQRcecDNcBh91C5eoNNO7wNc_s8pWs_vV_Vjtnh-aOpqkfVUiphBV1KuSs5yKEQqBYZuOyGUkpwzbQzPtUlAGaJbA4wIbYShBS2l6FgBKp-i67_cPqSHNgdvB-0_N0wQLknJ8h-iTVfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Ke, Weiming ; Tang, Boxin</creator><creatorcontrib>Ke, Weiming ; Tang, Boxin</creatorcontrib><description>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</description><identifier>ISSN: 0040-1706</identifier><identifier>DOI: 10.1198/004017003000000186</identifier><language>eng</language><publisher>The American Society for Quality Control and The American Statistical Association</publisher><subject>Estimation bias ; Experiment design ; Factorial design ; Industrial design ; Matrices ; Noise control ; Rationing ; Robust parameter design ; Vertices</subject><ispartof>Technometrics, 2003-11, Vol.45 (4), p.352-360</ispartof><rights>Copyright 2003 The American Statistical Association and the American Society for Quality</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25047092$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25047092$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Ke, Weiming</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><title>Technometrics</title><description>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</description><subject>Estimation bias</subject><subject>Experiment design</subject><subject>Factorial design</subject><subject>Industrial design</subject><subject>Matrices</subject><subject>Noise control</subject><subject>Rationing</subject><subject>Robust parameter design</subject><subject>Vertices</subject><issn>0040-1706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj0FLAzEQhXNQsFb_gCDk0Otqkk022eOyWl2oeGiLN0u6ma1ZutmSRETE_26qvss8vhke8xC6ouSG0lLdEsIJlYTk5FdUFSdocoRZosUZOg-hTzhnSk6QW8Ie2mjdbsZev4bs8D27g2B3LuB1SBRr_GSdHd4HXG3Bex3t6HDtbQR_dC9v4PByHACvPsZsrts4ety4tE02HQRcecDNcBh91C5eoNNO7wNc_s8pWs_vV_Vjtnh-aOpqkfVUiphBV1KuSs5yKEQqBYZuOyGUkpwzbQzPtUlAGaJbA4wIbYShBS2l6FgBKp-i67_cPqSHNgdvB-0_N0wQLknJ8h-iTVfQ</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Ke, Weiming</creator><creator>Tang, Boxin</creator><general>The American Society for Quality Control and The American Statistical Association</general><scope/></search><sort><creationdate>20031101</creationdate><title>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</title><author>Ke, Weiming ; Tang, Boxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-ef91489423e65119ed1bf55887442add43adbf58d0acde205ad5d161975f26e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Estimation bias</topic><topic>Experiment design</topic><topic>Factorial design</topic><topic>Industrial design</topic><topic>Matrices</topic><topic>Noise control</topic><topic>Rationing</topic><topic>Robust parameter design</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Weiming</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Weiming</au><au>Tang, Boxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important</atitle><jtitle>Technometrics</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>45</volume><issue>4</issue><spage>352</spage><epage>360</epage><pages>352-360</pages><issn>0040-1706</issn><abstract>We consider the problem of selecting appropriate$2^{m-p}$designs when some two-factor interactions are important. Current methods in the literature select designs that permit estimation of the postulated model consisting of the main effects and important two-factor interactions, under the assumption that all of the other effects are negligible. When the effects not in the postulated model are not negligible, they will bias the estimates of the effects in the model. To minimize the contamination of these nonnegligible effects on the model, we propose and study a minimum aberration criterion. We then discuss the application of this new aberration criterion to compromise plans. Finally, we examine how to search for the best designs according to the criterion and present some results for designs of 16 and 32 runs.</abstract><pub>The American Society for Quality Control and The American Statistical Association</pub><doi>10.1198/004017003000000186</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2003-11, Vol.45 (4), p.352-360
issn 0040-1706
language eng
recordid cdi_jstor_primary_25047092
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Estimation bias
Experiment design
Factorial design
Industrial design
Matrices
Noise control
Rationing
Robust parameter design
Vertices
title Selecting$2^{m-p}$Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting$2%5E%7Bm-p%7D$Designs%20Using%20a%20Minimum%20Aberration%20Criterion%20When%20Some%20Two-Factor%20Interactions%20Are%20Important&rft.jtitle=Technometrics&rft.au=Ke,%20Weiming&rft.date=2003-11-01&rft.volume=45&rft.issue=4&rft.spage=352&rft.epage=360&rft.pages=352-360&rft.issn=0040-1706&rft_id=info:doi/10.1198/004017003000000186&rft_dat=%3Cjstor%3E25047092%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25047092&rfr_iscdi=true