On Graphs with Exactly Three Q-main Eigenvalues

For a simple graph G, the Q-eigenvalues are the eigenvalues of the signless Laplacian matrix Q of G. A Q-eigenvalue is said to be a Q-main eigenvalue if it admits a corresponding eigenvector non orthogonal to the all-one vector, or alternatively if the sum of its component entries is non-zero. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2017-01, Vol.31 (6), p.1803-1812
Hauptverfasser: Javarsineh, Mehrnoosh, Fath-Tabar, Gholam Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a simple graph G, the Q-eigenvalues are the eigenvalues of the signless Laplacian matrix Q of G. A Q-eigenvalue is said to be a Q-main eigenvalue if it admits a corresponding eigenvector non orthogonal to the all-one vector, or alternatively if the sum of its component entries is non-zero. In the literature the trees, unicyclic, bicyclic and tricyclic graphs with exactly two Q-main eigenvalues have been recently identified. In this paper we continue these investigations by identifying the trees with exactly three Q-main eigenvalues, where one of them is zero.
ISSN:0354-5180
2406-0933