Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803
The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2015-10, Vol.169 (2), p.1307-1317 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1317 |
---|---|
container_issue | 2 |
container_start_page | 1307 |
container_title | Plant physiology (Bethesda) |
container_volume | 169 |
creator | Kopečná, Jana Pilný, Jan Krynická, Vendula Tomčala, Aleš Kis, Mihály Gombos, Zoltan Komenda, Josef Sobotka, Roman |
description | The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24806480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24806480</jstor_id><sourcerecordid>24806480</sourcerecordid><originalsourceid>FETCH-jstor_primary_248064803</originalsourceid><addsrcrecordid>eNqFjc1KBDEQhIMoOP48gtAvsJL52SVeHRSFFRbH-xJnsqbX3iSkew_xVXxZ5-DJi4eiiq8o6kRV9bJtFs2yM6eq0nrO2pi7c3XBvNda123dVep7bcdPiDvY-MjJW8Gp0AeV0eVI8Bw8vqMw9J5ijskXIrjHyCWId4wMVuDlSIKJHAwobiZhgjUe_qxwcvDqjoKEX_NJDIBhKMGNPo6FBZnTLQySLQbY9D2sjG6v1NnOErvrX79UN48Pb_3TYs8S8zZlPNhctk1n9GpW-1__A6ZPWEY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</creator><creatorcontrib>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</creatorcontrib><description>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Biology ; Biosynthesis ; Chlorophylls ; Enzymes ; Gels ; Lipids ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Photosystem II ; Plant cells ; Plants ; Starvation</subject><ispartof>Plant physiology (Bethesda), 2015-10, Vol.169 (2), p.1307-1317</ispartof><rights>Copyright © 2015 American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24806480$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24806480$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Kopečná, Jana</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Krynická, Vendula</creatorcontrib><creatorcontrib>Tomčala, Aleš</creatorcontrib><creatorcontrib>Kis, Mihály</creatorcontrib><creatorcontrib>Gombos, Zoltan</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><title>Plant physiology (Bethesda)</title><description>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</description><subject>Biology</subject><subject>Biosynthesis</subject><subject>Chlorophylls</subject><subject>Enzymes</subject><subject>Gels</subject><subject>Lipids</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Photosystem II</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Starvation</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjc1KBDEQhIMoOP48gtAvsJL52SVeHRSFFRbH-xJnsqbX3iSkew_xVXxZ5-DJi4eiiq8o6kRV9bJtFs2yM6eq0nrO2pi7c3XBvNda123dVep7bcdPiDvY-MjJW8Gp0AeV0eVI8Bw8vqMw9J5ijskXIrjHyCWId4wMVuDlSIKJHAwobiZhgjUe_qxwcvDqjoKEX_NJDIBhKMGNPo6FBZnTLQySLQbY9D2sjG6v1NnOErvrX79UN48Pb_3TYs8S8zZlPNhctk1n9GpW-1__A6ZPWEY</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kopečná, Jana</creator><creator>Pilný, Jan</creator><creator>Krynická, Vendula</creator><creator>Tomčala, Aleš</creator><creator>Kis, Mihály</creator><creator>Gombos, Zoltan</creator><creator>Komenda, Josef</creator><creator>Sobotka, Roman</creator><general>American Society of Plant Biologists</general><scope/></search><sort><creationdate>20151001</creationdate><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><author>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_248064803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biology</topic><topic>Biosynthesis</topic><topic>Chlorophylls</topic><topic>Enzymes</topic><topic>Gels</topic><topic>Lipids</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Photosystem II</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Starvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopečná, Jana</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Krynická, Vendula</creatorcontrib><creatorcontrib>Tomčala, Aleš</creatorcontrib><creatorcontrib>Kis, Mihály</creatorcontrib><creatorcontrib>Gombos, Zoltan</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopečná, Jana</au><au>Pilný, Jan</au><au>Krynická, Vendula</au><au>Tomčala, Aleš</au><au>Kis, Mihály</au><au>Gombos, Zoltan</au><au>Komenda, Josef</au><au>Sobotka, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>169</volume><issue>2</issue><spage>1307</spage><epage>1317</epage><pages>1307-1317</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</abstract><pub>American Society of Plant Biologists</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2015-10, Vol.169 (2), p.1307-1317 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_jstor_primary_24806480 |
source | JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Biology Biosynthesis Chlorophylls Enzymes Gels Lipids MEMBRANES, TRANSPORT, AND BIOENERGETICS Photosystem II Plant cells Plants Starvation |
title | Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20Phosphatidylglycerol%20Inhibits%20Chlorophyll%20Biosynthesis%20at%20Multiple%20Sites%20and%20Limits%20Chlorophyllide%20Reutilization%20inSynechocystissp.%20Strain%20PCC%206803&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kope%C4%8Dn%C3%A1,%20Jana&rft.date=2015-10-01&rft.volume=169&rft.issue=2&rft.spage=1307&rft.epage=1317&rft.pages=1307-1317&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/&rft_dat=%3Cjstor%3E24806480%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24806480&rfr_iscdi=true |