Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803

The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2015-10, Vol.169 (2), p.1307-1317
Hauptverfasser: Kopečná, Jana, Pilný, Jan, Krynická, Vendula, Tomčala, Aleš, Kis, Mihály, Gombos, Zoltan, Komenda, Josef, Sobotka, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1317
container_issue 2
container_start_page 1307
container_title Plant physiology (Bethesda)
container_volume 169
creator Kopečná, Jana
Pilný, Jan
Krynická, Vendula
Tomčala, Aleš
Kis, Mihály
Gombos, Zoltan
Komenda, Josef
Sobotka, Roman
description The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24806480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24806480</jstor_id><sourcerecordid>24806480</sourcerecordid><originalsourceid>FETCH-jstor_primary_248064803</originalsourceid><addsrcrecordid>eNqFjc1KBDEQhIMoOP48gtAvsJL52SVeHRSFFRbH-xJnsqbX3iSkew_xVXxZ5-DJi4eiiq8o6kRV9bJtFs2yM6eq0nrO2pi7c3XBvNda123dVep7bcdPiDvY-MjJW8Gp0AeV0eVI8Bw8vqMw9J5ijskXIrjHyCWId4wMVuDlSIKJHAwobiZhgjUe_qxwcvDqjoKEX_NJDIBhKMGNPo6FBZnTLQySLQbY9D2sjG6v1NnOErvrX79UN48Pb_3TYs8S8zZlPNhctk1n9GpW-1__A6ZPWEY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</creator><creatorcontrib>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</creatorcontrib><description>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Biology ; Biosynthesis ; Chlorophylls ; Enzymes ; Gels ; Lipids ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Photosystem II ; Plant cells ; Plants ; Starvation</subject><ispartof>Plant physiology (Bethesda), 2015-10, Vol.169 (2), p.1307-1317</ispartof><rights>Copyright © 2015 American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24806480$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24806480$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Kopečná, Jana</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Krynická, Vendula</creatorcontrib><creatorcontrib>Tomčala, Aleš</creatorcontrib><creatorcontrib>Kis, Mihály</creatorcontrib><creatorcontrib>Gombos, Zoltan</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><title>Plant physiology (Bethesda)</title><description>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</description><subject>Biology</subject><subject>Biosynthesis</subject><subject>Chlorophylls</subject><subject>Enzymes</subject><subject>Gels</subject><subject>Lipids</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Photosystem II</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Starvation</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjc1KBDEQhIMoOP48gtAvsJL52SVeHRSFFRbH-xJnsqbX3iSkew_xVXxZ5-DJi4eiiq8o6kRV9bJtFs2yM6eq0nrO2pi7c3XBvNda123dVep7bcdPiDvY-MjJW8Gp0AeV0eVI8Bw8vqMw9J5ijskXIrjHyCWId4wMVuDlSIKJHAwobiZhgjUe_qxwcvDqjoKEX_NJDIBhKMGNPo6FBZnTLQySLQbY9D2sjG6v1NnOErvrX79UN48Pb_3TYs8S8zZlPNhctk1n9GpW-1__A6ZPWEY</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kopečná, Jana</creator><creator>Pilný, Jan</creator><creator>Krynická, Vendula</creator><creator>Tomčala, Aleš</creator><creator>Kis, Mihály</creator><creator>Gombos, Zoltan</creator><creator>Komenda, Josef</creator><creator>Sobotka, Roman</creator><general>American Society of Plant Biologists</general><scope/></search><sort><creationdate>20151001</creationdate><title>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</title><author>Kopečná, Jana ; Pilný, Jan ; Krynická, Vendula ; Tomčala, Aleš ; Kis, Mihály ; Gombos, Zoltan ; Komenda, Josef ; Sobotka, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_248064803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biology</topic><topic>Biosynthesis</topic><topic>Chlorophylls</topic><topic>Enzymes</topic><topic>Gels</topic><topic>Lipids</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Photosystem II</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Starvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopečná, Jana</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Krynická, Vendula</creatorcontrib><creatorcontrib>Tomčala, Aleš</creatorcontrib><creatorcontrib>Kis, Mihály</creatorcontrib><creatorcontrib>Gombos, Zoltan</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopečná, Jana</au><au>Pilný, Jan</au><au>Krynická, Vendula</au><au>Tomčala, Aleš</au><au>Kis, Mihály</au><au>Gombos, Zoltan</au><au>Komenda, Josef</au><au>Sobotka, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>169</volume><issue>2</issue><spage>1307</spage><epage>1317</epage><pages>1307-1317</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsAmutant ofSynechocystissp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsAmutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.</abstract><pub>American Society of Plant Biologists</pub></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2015-10, Vol.169 (2), p.1307-1317
issn 0032-0889
1532-2548
language eng
recordid cdi_jstor_primary_24806480
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Biology
Biosynthesis
Chlorophylls
Enzymes
Gels
Lipids
MEMBRANES, TRANSPORT, AND BIOENERGETICS
Photosystem II
Plant cells
Plants
Starvation
title Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization inSynechocystissp. Strain PCC 6803
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20Phosphatidylglycerol%20Inhibits%20Chlorophyll%20Biosynthesis%20at%20Multiple%20Sites%20and%20Limits%20Chlorophyllide%20Reutilization%20inSynechocystissp.%20Strain%20PCC%206803&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kope%C4%8Dn%C3%A1,%20Jana&rft.date=2015-10-01&rft.volume=169&rft.issue=2&rft.spage=1307&rft.epage=1317&rft.pages=1307-1317&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/&rft_dat=%3Cjstor%3E24806480%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24806480&rfr_iscdi=true