Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli
Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitn...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2015-12, Vol.282 (1821), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1821 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 282 |
creator | Lenski, Richard E. Wiser, Michael J. Ribeck, Noah Blount, Zachary D. Nahum, Joshua R. Morris, J. Jeffrey Zaman, Luis Turner, Caroline B. Wade, Brian D. Maddamsetti, Rohan Burmeister, Alita R. Baird, Elizabeth J. Bundy, Jay Grant, Nkrumah A. Card, Kyle J. Rowles, Maia Weatherspoon, Kiyana Papoulis, Spiridon E. Sullivan, Rachel Clark, Colleen Mulka, Joseph S. Hajela, Neerja |
description | Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24762342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24762342</jstor_id><sourcerecordid>24762342</sourcerecordid><originalsourceid>FETCH-jstor_primary_247623423</originalsourceid><addsrcrecordid>eNqFjMsKwjAQRbNQ8PkJwvxAocRW61oU97ovsZ3aKWkimfFR_HkriFtXl3vuY6DG8WaloyxJ9UhNmJs4jjdplo7V63hjMeSwhIrEITNcestgXAl3E8icyZJ0QO5XkGAaLMQHQv5wqRGsd5dIMLSAd29vQt4BPq8YqEUn8CCpYcdF3YOiJgOFtzRTw8pYxvlXp2qx3522h6jh_jy_9lsTulwn65VeJnr5L38D9a9LUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Lenski, Richard E. ; Wiser, Michael J. ; Ribeck, Noah ; Blount, Zachary D. ; Nahum, Joshua R. ; Morris, J. Jeffrey ; Zaman, Luis ; Turner, Caroline B. ; Wade, Brian D. ; Maddamsetti, Rohan ; Burmeister, Alita R. ; Baird, Elizabeth J. ; Bundy, Jay ; Grant, Nkrumah A. ; Card, Kyle J. ; Rowles, Maia ; Weatherspoon, Kiyana ; Papoulis, Spiridon E. ; Sullivan, Rachel ; Clark, Colleen ; Mulka, Joseph S. ; Hajela, Neerja</creator><creatorcontrib>Lenski, Richard E. ; Wiser, Michael J. ; Ribeck, Noah ; Blount, Zachary D. ; Nahum, Joshua R. ; Morris, J. Jeffrey ; Zaman, Luis ; Turner, Caroline B. ; Wade, Brian D. ; Maddamsetti, Rohan ; Burmeister, Alita R. ; Baird, Elizabeth J. ; Bundy, Jay ; Grant, Nkrumah A. ; Card, Kyle J. ; Rowles, Maia ; Weatherspoon, Kiyana ; Papoulis, Spiridon E. ; Sullivan, Rachel ; Clark, Colleen ; Mulka, Joseph S. ; Hajela, Neerja</creatorcontrib><description>Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment.</description><identifier>ISSN: 0962-8452</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2015-12, Vol.282 (1821), p.1-9</ispartof><rights>The Royal Society, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24762342$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24762342$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Lenski, Richard E.</creatorcontrib><creatorcontrib>Wiser, Michael J.</creatorcontrib><creatorcontrib>Ribeck, Noah</creatorcontrib><creatorcontrib>Blount, Zachary D.</creatorcontrib><creatorcontrib>Nahum, Joshua R.</creatorcontrib><creatorcontrib>Morris, J. Jeffrey</creatorcontrib><creatorcontrib>Zaman, Luis</creatorcontrib><creatorcontrib>Turner, Caroline B.</creatorcontrib><creatorcontrib>Wade, Brian D.</creatorcontrib><creatorcontrib>Maddamsetti, Rohan</creatorcontrib><creatorcontrib>Burmeister, Alita R.</creatorcontrib><creatorcontrib>Baird, Elizabeth J.</creatorcontrib><creatorcontrib>Bundy, Jay</creatorcontrib><creatorcontrib>Grant, Nkrumah A.</creatorcontrib><creatorcontrib>Card, Kyle J.</creatorcontrib><creatorcontrib>Rowles, Maia</creatorcontrib><creatorcontrib>Weatherspoon, Kiyana</creatorcontrib><creatorcontrib>Papoulis, Spiridon E.</creatorcontrib><creatorcontrib>Sullivan, Rachel</creatorcontrib><creatorcontrib>Clark, Colleen</creatorcontrib><creatorcontrib>Mulka, Joseph S.</creatorcontrib><creatorcontrib>Hajela, Neerja</creatorcontrib><title>Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli</title><title>Proceedings of the Royal Society. B, Biological sciences</title><description>Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment.</description><issn>0962-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjMsKwjAQRbNQ8PkJwvxAocRW61oU97ovsZ3aKWkimfFR_HkriFtXl3vuY6DG8WaloyxJ9UhNmJs4jjdplo7V63hjMeSwhIrEITNcestgXAl3E8icyZJ0QO5XkGAaLMQHQv5wqRGsd5dIMLSAd29vQt4BPq8YqEUn8CCpYcdF3YOiJgOFtzRTw8pYxvlXp2qx3522h6jh_jy_9lsTulwn65VeJnr5L38D9a9LUg</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Lenski, Richard E.</creator><creator>Wiser, Michael J.</creator><creator>Ribeck, Noah</creator><creator>Blount, Zachary D.</creator><creator>Nahum, Joshua R.</creator><creator>Morris, J. Jeffrey</creator><creator>Zaman, Luis</creator><creator>Turner, Caroline B.</creator><creator>Wade, Brian D.</creator><creator>Maddamsetti, Rohan</creator><creator>Burmeister, Alita R.</creator><creator>Baird, Elizabeth J.</creator><creator>Bundy, Jay</creator><creator>Grant, Nkrumah A.</creator><creator>Card, Kyle J.</creator><creator>Rowles, Maia</creator><creator>Weatherspoon, Kiyana</creator><creator>Papoulis, Spiridon E.</creator><creator>Sullivan, Rachel</creator><creator>Clark, Colleen</creator><creator>Mulka, Joseph S.</creator><creator>Hajela, Neerja</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20151222</creationdate><title>Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli</title><author>Lenski, Richard E. ; Wiser, Michael J. ; Ribeck, Noah ; Blount, Zachary D. ; Nahum, Joshua R. ; Morris, J. Jeffrey ; Zaman, Luis ; Turner, Caroline B. ; Wade, Brian D. ; Maddamsetti, Rohan ; Burmeister, Alita R. ; Baird, Elizabeth J. ; Bundy, Jay ; Grant, Nkrumah A. ; Card, Kyle J. ; Rowles, Maia ; Weatherspoon, Kiyana ; Papoulis, Spiridon E. ; Sullivan, Rachel ; Clark, Colleen ; Mulka, Joseph S. ; Hajela, Neerja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_247623423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenski, Richard E.</creatorcontrib><creatorcontrib>Wiser, Michael J.</creatorcontrib><creatorcontrib>Ribeck, Noah</creatorcontrib><creatorcontrib>Blount, Zachary D.</creatorcontrib><creatorcontrib>Nahum, Joshua R.</creatorcontrib><creatorcontrib>Morris, J. Jeffrey</creatorcontrib><creatorcontrib>Zaman, Luis</creatorcontrib><creatorcontrib>Turner, Caroline B.</creatorcontrib><creatorcontrib>Wade, Brian D.</creatorcontrib><creatorcontrib>Maddamsetti, Rohan</creatorcontrib><creatorcontrib>Burmeister, Alita R.</creatorcontrib><creatorcontrib>Baird, Elizabeth J.</creatorcontrib><creatorcontrib>Bundy, Jay</creatorcontrib><creatorcontrib>Grant, Nkrumah A.</creatorcontrib><creatorcontrib>Card, Kyle J.</creatorcontrib><creatorcontrib>Rowles, Maia</creatorcontrib><creatorcontrib>Weatherspoon, Kiyana</creatorcontrib><creatorcontrib>Papoulis, Spiridon E.</creatorcontrib><creatorcontrib>Sullivan, Rachel</creatorcontrib><creatorcontrib>Clark, Colleen</creatorcontrib><creatorcontrib>Mulka, Joseph S.</creatorcontrib><creatorcontrib>Hajela, Neerja</creatorcontrib><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenski, Richard E.</au><au>Wiser, Michael J.</au><au>Ribeck, Noah</au><au>Blount, Zachary D.</au><au>Nahum, Joshua R.</au><au>Morris, J. Jeffrey</au><au>Zaman, Luis</au><au>Turner, Caroline B.</au><au>Wade, Brian D.</au><au>Maddamsetti, Rohan</au><au>Burmeister, Alita R.</au><au>Baird, Elizabeth J.</au><au>Bundy, Jay</au><au>Grant, Nkrumah A.</au><au>Card, Kyle J.</au><au>Rowles, Maia</au><au>Weatherspoon, Kiyana</au><au>Papoulis, Spiridon E.</au><au>Sullivan, Rachel</au><au>Clark, Colleen</au><au>Mulka, Joseph S.</au><au>Hajela, Neerja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><date>2015-12-22</date><risdate>2015</risdate><volume>282</volume><issue>1821</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0962-8452</issn><abstract>Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2015-12, Vol.282 (1821), p.1-9 |
issn | 0962-8452 |
language | eng |
recordid | cdi_jstor_primary_24762342 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central |
title | Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustained%20fitness%20gains%20and%20variability%20in%20fitness%20trajectories%20in%20the%20long-term%20evolution%20experiment%20with%20Escherichia%20coli&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Lenski,%20Richard%20E.&rft.date=2015-12-22&rft.volume=282&rft.issue=1821&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0962-8452&rft_id=info:doi/&rft_dat=%3Cjstor%3E24762342%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24762342&rfr_iscdi=true |