Maximizing the optical network capacity

Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2016-03, Vol.374 (2062), p.1-24
Hauptverfasser: Bayvel, Polina, Maher, Robert, Xu, Tianhua, Liga, Gabriele, Shevchenko, Nikita A., Lavery, Domaniç, Alvarado, Alex, Killey, Robert I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 2062
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 374
creator Bayvel, Polina
Maher, Robert
Xu, Tianhua
Liga, Gabriele
Shevchenko, Nikita A.
Lavery, Domaniç
Alvarado, Alex
Killey, Robert I.
description Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24758759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24758759</jstor_id><sourcerecordid>24758759</sourcerecordid><originalsourceid>FETCH-jstor_primary_247587593</originalsourceid><addsrcrecordid>eNpjYuA0NDE31DWyNDNiAbKNzUx0TQ2MIzgYuIqLswwMDA3NTI04GdR9EysyczOrMvPSFUoyUhXyC0oykxNzFPJSS8rzi7IVkhMLEpMzSyp5GFjTEnOKU3mhNDeDrJtriLOHblZxSX5RfEFRZm5iUWW8kYm5qYW5qaUxIXkAIjYtRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximizing the optical network capacity</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bayvel, Polina ; Maher, Robert ; Xu, Tianhua ; Liga, Gabriele ; Shevchenko, Nikita A. ; Lavery, Domaniç ; Alvarado, Alex ; Killey, Robert I.</creator><creatorcontrib>Bayvel, Polina ; Maher, Robert ; Xu, Tianhua ; Liga, Gabriele ; Shevchenko, Nikita A. ; Lavery, Domaniç ; Alvarado, Alex ; Killey, Robert I.</creatorcontrib><description>Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><subject>Bit error rate ; Channel capacity ; Channel coding ; Data transmission ; Nonlinearity ; Optical communications ; Signal bandwidth ; Signal noise ; Signal transmission ; Signals</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2016-03, Vol.374 (2062), p.1-24</ispartof><rights>The Royal Society, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24758759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24758759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,834,58028,58261</link.rule.ids></links><search><creatorcontrib>Bayvel, Polina</creatorcontrib><creatorcontrib>Maher, Robert</creatorcontrib><creatorcontrib>Xu, Tianhua</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Shevchenko, Nikita A.</creatorcontrib><creatorcontrib>Lavery, Domaniç</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><creatorcontrib>Killey, Robert I.</creatorcontrib><title>Maximizing the optical network capacity</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.</description><subject>Bit error rate</subject><subject>Channel capacity</subject><subject>Channel coding</subject><subject>Data transmission</subject><subject>Nonlinearity</subject><subject>Optical communications</subject><subject>Signal bandwidth</subject><subject>Signal noise</subject><subject>Signal transmission</subject><subject>Signals</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDE31DWyNDNiAbKNzUx0TQ2MIzgYuIqLswwMDA3NTI04GdR9EysyczOrMvPSFUoyUhXyC0oykxNzFPJSS8rzi7IVkhMLEpMzSyp5GFjTEnOKU3mhNDeDrJtriLOHblZxSX5RfEFRZm5iUWW8kYm5qYW5qaUxIXkAIjYtRw</recordid><startdate>20160306</startdate><enddate>20160306</enddate><creator>Bayvel, Polina</creator><creator>Maher, Robert</creator><creator>Xu, Tianhua</creator><creator>Liga, Gabriele</creator><creator>Shevchenko, Nikita A.</creator><creator>Lavery, Domaniç</creator><creator>Alvarado, Alex</creator><creator>Killey, Robert I.</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20160306</creationdate><title>Maximizing the optical network capacity</title><author>Bayvel, Polina ; Maher, Robert ; Xu, Tianhua ; Liga, Gabriele ; Shevchenko, Nikita A. ; Lavery, Domaniç ; Alvarado, Alex ; Killey, Robert I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_247587593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bit error rate</topic><topic>Channel capacity</topic><topic>Channel coding</topic><topic>Data transmission</topic><topic>Nonlinearity</topic><topic>Optical communications</topic><topic>Signal bandwidth</topic><topic>Signal noise</topic><topic>Signal transmission</topic><topic>Signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayvel, Polina</creatorcontrib><creatorcontrib>Maher, Robert</creatorcontrib><creatorcontrib>Xu, Tianhua</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Shevchenko, Nikita A.</creatorcontrib><creatorcontrib>Lavery, Domaniç</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><creatorcontrib>Killey, Robert I.</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayvel, Polina</au><au>Maher, Robert</au><au>Xu, Tianhua</au><au>Liga, Gabriele</au><au>Shevchenko, Nikita A.</au><au>Lavery, Domaniç</au><au>Alvarado, Alex</au><au>Killey, Robert I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the optical network capacity</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2016-03-06</date><risdate>2016</risdate><volume>374</volume><issue>2062</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2016-03, Vol.374 (2062), p.1-24
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_24758759
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bit error rate
Channel capacity
Channel coding
Data transmission
Nonlinearity
Optical communications
Signal bandwidth
Signal noise
Signal transmission
Signals
title Maximizing the optical network capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20optical%20network%20capacity&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bayvel,%20Polina&rft.date=2016-03-06&rft.volume=374&rft.issue=2062&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E24758759%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24758759&rfr_iscdi=true