Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method

The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2015-12, Vol.110 (512), p.1362-1374
Hauptverfasser: Wang, Liangliang, Bouchard-Côté, Alexandre, Doucet, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 512
container_start_page 1362
container_title Journal of the American Statistical Association
container_volume 110
creator Wang, Liangliang
Bouchard-Côté, Alexandre
Doucet, Arnaud
description The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2015.1054487
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_24740146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24740146</jstor_id><sourcerecordid>24740146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</originalsourceid><addsrcrecordid>eNqFkU9PGzEQxVcVlQq0HwGxUi9cEvzf3hsQ0YIEaqU0Um_W7GYcHG1ssDdC-fY4XahQL_XBHtnvvRn9XFUnlEwpMeScUMWokM2UESrLlRTC6A_VIZVcT5gWvw_e1Z-qo5zXpCxtzGE1v4IdZg-h_vmw6-MKAw6-q2-Dw4Shw3qRfVjVUM_ipvUBhpg89PUcn7YYhn15H8OA9QxSH-t7HB7i8nP10UGf8cvreVwtvl3_mt1M7n58v51d3k060ehhQoGplhJiEFpjuNJd2wjqGDfCMWw1o64Bidg0wijJ6ZKD48a1tGyaacmPq7Mx9zHFMk4e7MbnDvseAsZttlTrgkUpsZd-_Ue6jtsUynRFpYSmRAlVVHJUdSnmnNDZx-Q3kHaWErtHbd9Q2z1q-4q6-E5G3zoXPn9NTGhB6J_ci_HdBxfTBp5j6pd2gAI8uQSh89ny_7U4HSMcRAurVByLeVGo8pFGNprxF9CQlsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764710646</pqid></control><display><type>article</type><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creator><creatorcontrib>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creatorcontrib><description>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2015.1054487</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>algorithms ; Applications and Case Studies ; Bayesian analysis ; Bayesian inference ; Bayesian method ; Markov analysis ; Markov chain ; Monte Carlo method ; Monte Carlo simulation ; Particle Markov chain Monte Carlo ; Phylogenetics ; phylogeny ; Poset ; Sampling ; Sequential Monte Carlo ; Statistics ; Time series ; time series analysis</subject><ispartof>Journal of the American Statistical Association, 2015-12, Vol.110 (512), p.1362-1374</ispartof><rights>American Statistical Association 2015</rights><rights>2015 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</citedby><cites>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24740146$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24740146$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids></links><search><creatorcontrib>Wang, Liangliang</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><title>Journal of the American Statistical Association</title><description>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</description><subject>algorithms</subject><subject>Applications and Case Studies</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian method</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Particle Markov chain Monte Carlo</subject><subject>Phylogenetics</subject><subject>phylogeny</subject><subject>Poset</subject><subject>Sampling</subject><subject>Sequential Monte Carlo</subject><subject>Statistics</subject><subject>Time series</subject><subject>time series analysis</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9PGzEQxVcVlQq0HwGxUi9cEvzf3hsQ0YIEaqU0Um_W7GYcHG1ssDdC-fY4XahQL_XBHtnvvRn9XFUnlEwpMeScUMWokM2UESrLlRTC6A_VIZVcT5gWvw_e1Z-qo5zXpCxtzGE1v4IdZg-h_vmw6-MKAw6-q2-Dw4Shw3qRfVjVUM_ipvUBhpg89PUcn7YYhn15H8OA9QxSH-t7HB7i8nP10UGf8cvreVwtvl3_mt1M7n58v51d3k060ehhQoGplhJiEFpjuNJd2wjqGDfCMWw1o64Bidg0wijJ6ZKD48a1tGyaacmPq7Mx9zHFMk4e7MbnDvseAsZttlTrgkUpsZd-_Ue6jtsUynRFpYSmRAlVVHJUdSnmnNDZx-Q3kHaWErtHbd9Q2z1q-4q6-E5G3zoXPn9NTGhB6J_ci_HdBxfTBp5j6pd2gAI8uQSh89ny_7U4HSMcRAurVByLeVGo8pFGNprxF9CQlsg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, Liangliang</creator><creator>Bouchard-Côté, Alexandre</creator><creator>Doucet, Arnaud</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20151201</creationdate><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><author>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>algorithms</topic><topic>Applications and Case Studies</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian method</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Particle Markov chain Monte Carlo</topic><topic>Phylogenetics</topic><topic>phylogeny</topic><topic>Poset</topic><topic>Sampling</topic><topic>Sequential Monte Carlo</topic><topic>Statistics</topic><topic>Time series</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liangliang</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liangliang</au><au>Bouchard-Côté, Alexandre</au><au>Doucet, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>110</volume><issue>512</issue><spage>1362</spage><epage>1374</epage><pages>1362-1374</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2015.1054487</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2015-12, Vol.110 (512), p.1362-1374
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_24740146
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis:Master (3349 titles)
subjects algorithms
Applications and Case Studies
Bayesian analysis
Bayesian inference
Bayesian method
Markov analysis
Markov chain
Monte Carlo method
Monte Carlo simulation
Particle Markov chain Monte Carlo
Phylogenetics
phylogeny
Poset
Sampling
Sequential Monte Carlo
Statistics
Time series
time series analysis
title Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Phylogenetic%20Inference%20Using%20a%20Combinatorial%20Sequential%20Monte%20Carlo%20Method&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Wang,%20Liangliang&rft.date=2015-12-01&rft.volume=110&rft.issue=512&rft.spage=1362&rft.epage=1374&rft.pages=1362-1374&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2015.1054487&rft_dat=%3Cjstor_fao_a%3E24740146%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764710646&rft_id=info:pmid/&rft_jstor_id=24740146&rfr_iscdi=true