Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algori...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2015-12, Vol.110 (512), p.1362-1374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1374 |
---|---|
container_issue | 512 |
container_start_page | 1362 |
container_title | Journal of the American Statistical Association |
container_volume | 110 |
creator | Wang, Liangliang Bouchard-Côté, Alexandre Doucet, Arnaud |
description | The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2015.1054487 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_24740146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24740146</jstor_id><sourcerecordid>24740146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</originalsourceid><addsrcrecordid>eNqFkU9PGzEQxVcVlQq0HwGxUi9cEvzf3hsQ0YIEaqU0Um_W7GYcHG1ssDdC-fY4XahQL_XBHtnvvRn9XFUnlEwpMeScUMWokM2UESrLlRTC6A_VIZVcT5gWvw_e1Z-qo5zXpCxtzGE1v4IdZg-h_vmw6-MKAw6-q2-Dw4Shw3qRfVjVUM_ipvUBhpg89PUcn7YYhn15H8OA9QxSH-t7HB7i8nP10UGf8cvreVwtvl3_mt1M7n58v51d3k060ehhQoGplhJiEFpjuNJd2wjqGDfCMWw1o64Bidg0wijJ6ZKD48a1tGyaacmPq7Mx9zHFMk4e7MbnDvseAsZttlTrgkUpsZd-_Ue6jtsUynRFpYSmRAlVVHJUdSnmnNDZx-Q3kHaWErtHbd9Q2z1q-4q6-E5G3zoXPn9NTGhB6J_ci_HdBxfTBp5j6pd2gAI8uQSh89ny_7U4HSMcRAurVByLeVGo8pFGNprxF9CQlsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764710646</pqid></control><display><type>article</type><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creator><creatorcontrib>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creatorcontrib><description>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2015.1054487</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>algorithms ; Applications and Case Studies ; Bayesian analysis ; Bayesian inference ; Bayesian method ; Markov analysis ; Markov chain ; Monte Carlo method ; Monte Carlo simulation ; Particle Markov chain Monte Carlo ; Phylogenetics ; phylogeny ; Poset ; Sampling ; Sequential Monte Carlo ; Statistics ; Time series ; time series analysis</subject><ispartof>Journal of the American Statistical Association, 2015-12, Vol.110 (512), p.1362-1374</ispartof><rights>American Statistical Association 2015</rights><rights>2015 American Statistical Association</rights><rights>Copyright Taylor & Francis Ltd. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</citedby><cites>FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24740146$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24740146$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids></links><search><creatorcontrib>Wang, Liangliang</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><title>Journal of the American Statistical Association</title><description>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</description><subject>algorithms</subject><subject>Applications and Case Studies</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian method</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Particle Markov chain Monte Carlo</subject><subject>Phylogenetics</subject><subject>phylogeny</subject><subject>Poset</subject><subject>Sampling</subject><subject>Sequential Monte Carlo</subject><subject>Statistics</subject><subject>Time series</subject><subject>time series analysis</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9PGzEQxVcVlQq0HwGxUi9cEvzf3hsQ0YIEaqU0Um_W7GYcHG1ssDdC-fY4XahQL_XBHtnvvRn9XFUnlEwpMeScUMWokM2UESrLlRTC6A_VIZVcT5gWvw_e1Z-qo5zXpCxtzGE1v4IdZg-h_vmw6-MKAw6-q2-Dw4Shw3qRfVjVUM_ipvUBhpg89PUcn7YYhn15H8OA9QxSH-t7HB7i8nP10UGf8cvreVwtvl3_mt1M7n58v51d3k060ehhQoGplhJiEFpjuNJd2wjqGDfCMWw1o64Bidg0wijJ6ZKD48a1tGyaacmPq7Mx9zHFMk4e7MbnDvseAsZttlTrgkUpsZd-_Ue6jtsUynRFpYSmRAlVVHJUdSnmnNDZx-Q3kHaWErtHbd9Q2z1q-4q6-E5G3zoXPn9NTGhB6J_ci_HdBxfTBp5j6pd2gAI8uQSh89ny_7U4HSMcRAurVByLeVGo8pFGNprxF9CQlsg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, Liangliang</creator><creator>Bouchard-Côté, Alexandre</creator><creator>Doucet, Arnaud</creator><general>Taylor & Francis</general><general>Taylor & Francis Group, LLC</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20151201</creationdate><title>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</title><author>Wang, Liangliang ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-1a26b1008eab88367cb941f2384f2eb721f9a5ee99486531d3af38fb138f72753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>algorithms</topic><topic>Applications and Case Studies</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian method</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Particle Markov chain Monte Carlo</topic><topic>Phylogenetics</topic><topic>phylogeny</topic><topic>Poset</topic><topic>Sampling</topic><topic>Sequential Monte Carlo</topic><topic>Statistics</topic><topic>Time series</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liangliang</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liangliang</au><au>Bouchard-Côté, Alexandre</au><au>Doucet, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>110</volume><issue>512</issue><spage>1362</spage><epage>1374</epage><pages>1362-1374</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The application of Bayesian methods to large-scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently developed to address phylogenetic inference problems but currently available techniques are only applicable to a restricted class of phylogenetic tree models compared to MCMC. In this article, we propose an original combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree distributions, which is applicable to a general class of models and can be easily combined with MCMC to infer evolutionary parameters. Our method only relies on the existence of a flexible partially ordered set structure and is more generally applicable to sampling problems on combinatorial spaces. We demonstrate that the proposed CSMC algorithm provides consistent estimates under weak assumptions, is computationally fast, and is additionally easily parallelizable. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2015.1054487</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-274X |
ispartof | Journal of the American Statistical Association, 2015-12, Vol.110 (512), p.1362-1374 |
issn | 1537-274X 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_24740146 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis:Master (3349 titles) |
subjects | algorithms Applications and Case Studies Bayesian analysis Bayesian inference Bayesian method Markov analysis Markov chain Monte Carlo method Monte Carlo simulation Particle Markov chain Monte Carlo Phylogenetics phylogeny Poset Sampling Sequential Monte Carlo Statistics Time series time series analysis |
title | Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Phylogenetic%20Inference%20Using%20a%20Combinatorial%20Sequential%20Monte%20Carlo%20Method&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Wang,%20Liangliang&rft.date=2015-12-01&rft.volume=110&rft.issue=512&rft.spage=1362&rft.epage=1374&rft.pages=1362-1374&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2015.1054487&rft_dat=%3Cjstor_fao_a%3E24740146%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764710646&rft_id=info:pmid/&rft_jstor_id=24740146&rfr_iscdi=true |