NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS
The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A →...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2003-07, Vol.50 (1), p.3-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Journal of operator theory |
container_volume | 50 |
creator | NICULESCU, CONSTANTIN P. STRÖH, ANTON ZSIDÓ, LÁSZLÓ |
description | The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24718929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24718929</jstor_id><sourcerecordid>24718929</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-81aa5e9dc5aee60d7f23dadb3068b83892a17e325b0b52f6fc5d118648db46df3</originalsourceid><addsrcrecordid>eNotzM9KwzAAgPEgDqzTRxDyAoX8T3osMdsKaSJtOryNZGnBoijtLr69ijt9p-93AwqsGC6lZOwWFIjKqmSIsDtwv64zQhQjSQqwd95p37ZDqENzNNC8BuP6xrse-h3Utu77RtcW1u4ZtoMNzYs1sDN66DrjtIHhYHxn2v4BbKb4vo6P127BsDNBH0rr939AOWPJL6XCMfKxymcex1GgLCdCc8yJIqGSoqoiEcuREp5Q4mQS05lnjJVgKicm8kS34OnfndfL53L6Wt4-4vJ9Ikzi37miPy9EQHs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics & Statistics</source><creator>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</creator><creatorcontrib>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</creatorcontrib><description>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Ergodic theory ; Hilbert spaces ; Integers ; Linear transformations ; Mathematical theorems ; Mathematical vectors ; Natural numbers ; Topological theorems ; Von Neumann algebra</subject><ispartof>Journal of operator theory, 2003-07, Vol.50 (1), p.3-52</ispartof><rights>Copyright © 2003 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24718929$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24718929$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>NICULESCU, CONSTANTIN P.</creatorcontrib><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZLÓ</creatorcontrib><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><title>Journal of operator theory</title><description>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</description><subject>Ergodic theory</subject><subject>Hilbert spaces</subject><subject>Integers</subject><subject>Linear transformations</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Natural numbers</subject><subject>Topological theorems</subject><subject>Von Neumann algebra</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzM9KwzAAgPEgDqzTRxDyAoX8T3osMdsKaSJtOryNZGnBoijtLr69ijt9p-93AwqsGC6lZOwWFIjKqmSIsDtwv64zQhQjSQqwd95p37ZDqENzNNC8BuP6xrse-h3Utu77RtcW1u4ZtoMNzYs1sDN66DrjtIHhYHxn2v4BbKb4vo6P127BsDNBH0rr939AOWPJL6XCMfKxymcex1GgLCdCc8yJIqGSoqoiEcuREp5Q4mQS05lnjJVgKicm8kS34OnfndfL53L6Wt4-4vJ9Ikzi37miPy9EQHs</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>NICULESCU, CONSTANTIN P.</creator><creator>STRÖH, ANTON</creator><creator>ZSIDÓ, LÁSZLÓ</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20030701</creationdate><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><author>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-81aa5e9dc5aee60d7f23dadb3068b83892a17e325b0b52f6fc5d118648db46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Ergodic theory</topic><topic>Hilbert spaces</topic><topic>Integers</topic><topic>Linear transformations</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Natural numbers</topic><topic>Topological theorems</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NICULESCU, CONSTANTIN P.</creatorcontrib><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZLÓ</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NICULESCU, CONSTANTIN P.</au><au>STRÖH, ANTON</au><au>ZSIDÓ, LÁSZLÓ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</atitle><jtitle>Journal of operator theory</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>50</volume><issue>1</issue><spage>3</spage><epage>52</epage><pages>3-52</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</abstract><pub>Theta Foundation</pub><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-4024 |
ispartof | Journal of operator theory, 2003-07, Vol.50 (1), p.3-52 |
issn | 0379-4024 1841-7744 |
language | eng |
recordid | cdi_jstor_primary_24718929 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics |
subjects | Ergodic theory Hilbert spaces Integers Linear transformations Mathematical theorems Mathematical vectors Natural numbers Topological theorems Von Neumann algebra |
title | NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONCOMMUTATIVE%20EXTENSIONS%20OF%20CLASSICAL%20AND%20MULTIPLE%20RECURRENCE%20THEOREMS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=NICULESCU,%20CONSTANTIN%20P.&rft.date=2003-07-01&rft.volume=50&rft.issue=1&rft.spage=3&rft.epage=52&rft.pages=3-52&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24718929%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24718929&rfr_iscdi=true |