NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS

The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A →...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2003-07, Vol.50 (1), p.3-52
Hauptverfasser: NICULESCU, CONSTANTIN P., STRÖH, ANTON, ZSIDÓ, LÁSZLÓ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 3
container_title Journal of operator theory
container_volume 50
creator NICULESCU, CONSTANTIN P.
STRÖH, ANTON
ZSIDÓ, LÁSZLÓ
description The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24718929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24718929</jstor_id><sourcerecordid>24718929</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-81aa5e9dc5aee60d7f23dadb3068b83892a17e325b0b52f6fc5d118648db46df3</originalsourceid><addsrcrecordid>eNotzM9KwzAAgPEgDqzTRxDyAoX8T3osMdsKaSJtOryNZGnBoijtLr69ijt9p-93AwqsGC6lZOwWFIjKqmSIsDtwv64zQhQjSQqwd95p37ZDqENzNNC8BuP6xrse-h3Utu77RtcW1u4ZtoMNzYs1sDN66DrjtIHhYHxn2v4BbKb4vo6P127BsDNBH0rr939AOWPJL6XCMfKxymcex1GgLCdCc8yJIqGSoqoiEcuREp5Q4mQS05lnjJVgKicm8kS34OnfndfL53L6Wt4-4vJ9Ikzi37miPy9EQHs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</creator><creatorcontrib>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</creatorcontrib><description>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Ergodic theory ; Hilbert spaces ; Integers ; Linear transformations ; Mathematical theorems ; Mathematical vectors ; Natural numbers ; Topological theorems ; Von Neumann algebra</subject><ispartof>Journal of operator theory, 2003-07, Vol.50 (1), p.3-52</ispartof><rights>Copyright © 2003 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24718929$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24718929$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>NICULESCU, CONSTANTIN P.</creatorcontrib><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZLÓ</creatorcontrib><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><title>Journal of operator theory</title><description>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</description><subject>Ergodic theory</subject><subject>Hilbert spaces</subject><subject>Integers</subject><subject>Linear transformations</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Natural numbers</subject><subject>Topological theorems</subject><subject>Von Neumann algebra</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzM9KwzAAgPEgDqzTRxDyAoX8T3osMdsKaSJtOryNZGnBoijtLr69ijt9p-93AwqsGC6lZOwWFIjKqmSIsDtwv64zQhQjSQqwd95p37ZDqENzNNC8BuP6xrse-h3Utu77RtcW1u4ZtoMNzYs1sDN66DrjtIHhYHxn2v4BbKb4vo6P127BsDNBH0rr939AOWPJL6XCMfKxymcex1GgLCdCc8yJIqGSoqoiEcuREp5Q4mQS05lnjJVgKicm8kS34OnfndfL53L6Wt4-4vJ9Ikzi37miPy9EQHs</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>NICULESCU, CONSTANTIN P.</creator><creator>STRÖH, ANTON</creator><creator>ZSIDÓ, LÁSZLÓ</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20030701</creationdate><title>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</title><author>NICULESCU, CONSTANTIN P. ; STRÖH, ANTON ; ZSIDÓ, LÁSZLÓ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-81aa5e9dc5aee60d7f23dadb3068b83892a17e325b0b52f6fc5d118648db46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Ergodic theory</topic><topic>Hilbert spaces</topic><topic>Integers</topic><topic>Linear transformations</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Natural numbers</topic><topic>Topological theorems</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NICULESCU, CONSTANTIN P.</creatorcontrib><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZLÓ</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NICULESCU, CONSTANTIN P.</au><au>STRÖH, ANTON</au><au>ZSIDÓ, LÁSZLÓ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS</atitle><jtitle>Journal of operator theory</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>50</volume><issue>1</issue><spage>3</spage><epage>52</epage><pages>3-52</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>The aim of this paper is to extend the classical recurrence theorem of A.Y. Khintchine, as well as certain multiple recurrence results of H. Furstenberg concerning weakly mixing and almost periodic measure preserving transformations, to the framework of C*-algebras A and positive linear maps Φ : A → A preserving a state φ on A. For the proof of the multiple weak mixing results we use a slight extension of a convergence result of Furstenberg in Hilbert spaces, which is derived from a non-commutative generalization of Van der Corput's "Fundamental Inequality" in Theory of uniform distribution modulo 1, proved in Appendix A.</abstract><pub>Theta Foundation</pub><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 2003-07, Vol.50 (1), p.3-52
issn 0379-4024
1841-7744
language eng
recordid cdi_jstor_primary_24718929
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
subjects Ergodic theory
Hilbert spaces
Integers
Linear transformations
Mathematical theorems
Mathematical vectors
Natural numbers
Topological theorems
Von Neumann algebra
title NONCOMMUTATIVE EXTENSIONS OF CLASSICAL AND MULTIPLE RECURRENCE THEOREMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONCOMMUTATIVE%20EXTENSIONS%20OF%20CLASSICAL%20AND%20MULTIPLE%20RECURRENCE%20THEOREMS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=NICULESCU,%20CONSTANTIN%20P.&rft.date=2003-07-01&rft.volume=50&rft.issue=1&rft.spage=3&rft.epage=52&rft.pages=3-52&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24718929%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24718929&rfr_iscdi=true