ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS

In this paper we prove that a part of the Riesz decomposition theory for compact operators holds in maximal generality in the realm of von Neumann algebras. More precisely, if an element x of a von Neumann algebra M is essentially quasinilpotent with respect to an arbitrary norm closed twosided idea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 1997-10, Vol.38 (2), p.379-389
Hauptverfasser: STRÖH, ANTON, ZSIDÓ, LÁSZÓ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 2
container_start_page 379
container_title Journal of operator theory
container_volume 38
creator STRÖH, ANTON
ZSIDÓ, LÁSZÓ
description In this paper we prove that a part of the Riesz decomposition theory for compact operators holds in maximal generality in the realm of von Neumann algebras. More precisely, if an element x of a von Neumann algebra M is essentially quasinilpotent with respect to an arbitrary norm closed twosided ideal of M, then the supremum (in the projection lattice of M) of the kernel projections of all positive integer powers of 1 — x belongs to the ideal. It seems to be an interesting question, whether the above statement holds in arbitrary AW*-algebras.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24718848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24718848</jstor_id><sourcerecordid>24718848</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-d321a6c0d28857f669b5c6f688aa255c507f7e5c5166ec157909011bb901e76f3</originalsourceid><addsrcrecordid>eNotjNFKwzAYRoMoWKePIPwvUEjSNEkvsy5ugTSZTebY1Wi7FiyK0u7Gt7egN-d8nIvvBiVEMpIKwdgtSnAmipRhyu7RwzyPGGcEC5qgSYegXTTK2hO8HlQwzti9j0sDbXW1OMDRxB3UOux1GSF6UPXaxFrVJ3C-rqC0PugNxKNPg9ksa4GyAYyDN-_A6UOlnANlt3pdq_CI7obmY-6f_r1C8UXHcpdavzWlsulY0Gt6yShpeIcvVMpcDJwXbd7xgUvZNDTPuxyLQfSLCed9R3JR4AIT0rYLe8GHbIWe_27H-fo1nb-n989m-jlTJoiUTGa_WgZKtw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>STRÖH, ANTON ; ZSIDÓ, LÁSZÓ</creator><creatorcontrib>STRÖH, ANTON ; ZSIDÓ, LÁSZÓ</creatorcontrib><description>In this paper we prove that a part of the Riesz decomposition theory for compact operators holds in maximal generality in the realm of von Neumann algebras. More precisely, if an element x of a von Neumann algebra M is essentially quasinilpotent with respect to an arbitrary norm closed twosided ideal of M, then the supremum (in the projection lattice of M) of the kernel projections of all positive integer powers of 1 — x belongs to the ideal. It seems to be an interesting question, whether the above statement holds in arbitrary AW*-algebras.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Integers ; Mathematical theorems ; Mathematics ; Operator theory ; Von Neumann algebra</subject><ispartof>Journal of operator theory, 1997-10, Vol.38 (2), p.379-389</ispartof><rights>Copyright © 1997 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24718848$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24718848$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZÓ</creatorcontrib><title>ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS</title><title>Journal of operator theory</title><description>In this paper we prove that a part of the Riesz decomposition theory for compact operators holds in maximal generality in the realm of von Neumann algebras. More precisely, if an element x of a von Neumann algebra M is essentially quasinilpotent with respect to an arbitrary norm closed twosided ideal of M, then the supremum (in the projection lattice of M) of the kernel projections of all positive integer powers of 1 — x belongs to the ideal. It seems to be an interesting question, whether the above statement holds in arbitrary AW*-algebras.</description><subject>Integers</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Von Neumann algebra</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjNFKwzAYRoMoWKePIPwvUEjSNEkvsy5ugTSZTebY1Wi7FiyK0u7Gt7egN-d8nIvvBiVEMpIKwdgtSnAmipRhyu7RwzyPGGcEC5qgSYegXTTK2hO8HlQwzti9j0sDbXW1OMDRxB3UOux1GSF6UPXaxFrVJ3C-rqC0PugNxKNPg9ksa4GyAYyDN-_A6UOlnANlt3pdq_CI7obmY-6f_r1C8UXHcpdavzWlsulY0Gt6yShpeIcvVMpcDJwXbd7xgUvZNDTPuxyLQfSLCed9R3JR4AIT0rYLe8GHbIWe_27H-fo1nb-n989m-jlTJoiUTGa_WgZKtw</recordid><startdate>19971001</startdate><enddate>19971001</enddate><creator>STRÖH, ANTON</creator><creator>ZSIDÓ, LÁSZÓ</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>19971001</creationdate><title>ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS</title><author>STRÖH, ANTON ; ZSIDÓ, LÁSZÓ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-d321a6c0d28857f669b5c6f688aa255c507f7e5c5166ec157909011bb901e76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Integers</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STRÖH, ANTON</creatorcontrib><creatorcontrib>ZSIDÓ, LÁSZÓ</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STRÖH, ANTON</au><au>ZSIDÓ, LÁSZÓ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS</atitle><jtitle>Journal of operator theory</jtitle><date>1997-10-01</date><risdate>1997</risdate><volume>38</volume><issue>2</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>In this paper we prove that a part of the Riesz decomposition theory for compact operators holds in maximal generality in the realm of von Neumann algebras. More precisely, if an element x of a von Neumann algebra M is essentially quasinilpotent with respect to an arbitrary norm closed twosided ideal of M, then the supremum (in the projection lattice of M) of the kernel projections of all positive integer powers of 1 — x belongs to the ideal. It seems to be an interesting question, whether the above statement holds in arbitrary AW*-algebras.</abstract><pub>Theta Foundation</pub><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 1997-10, Vol.38 (2), p.379-389
issn 0379-4024
1841-7744
language eng
recordid cdi_jstor_primary_24718848
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Integers
Mathematical theorems
Mathematics
Operator theory
Von Neumann algebra
title ESSENTIALLY QUASINILPOTENT ELEMENTS WITH RESPECT TO ARBITRARY NORM CLOSED TWO-SIDED IDEALS IN VON NEUMANN ALGEBRAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ESSENTIALLY%20QUASINILPOTENT%20ELEMENTS%20WITH%20RESPECT%20TO%20ARBITRARY%20NORM%20CLOSED%20TWO-SIDED%20IDEALS%20IN%20VON%20NEUMANN%20ALGEBRAS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=STR%C3%96H,%20ANTON&rft.date=1997-10-01&rft.volume=38&rft.issue=2&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24718848%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24718848&rfr_iscdi=true